Analyse de sensibilité globale pour les modèles de simulation imbriqués et multiéchelles

par Yann Caniou

Thèse de doctorat en Génie Mécanique

Sous la direction de Bruno Sudret.

Soutenue le 29-11-2012

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Institut Pascal (Aubière, Puy-de-Dôme) (équipe de recherche) .

Le président du jury était Clémentine Prieur.

Le jury était composé de Bertrand Iooss, Zohra Cherfi-Boulanger, Thierry Yalamas, Nicolas Gayton, Maurice Lemaire.

Les rapporteurs étaient Bertrand Iooss, Zohra Cherfi-Boulanger.


  • Résumé

    Cette thèse est une contribution à la modélisation imbriquée de systèmes complexes. Elle propose une méthodologie globale pour quantifier les incertitudes et leurs origines dans une chaîne de calcul formée par plusieurs modèles pouvant être reliés les uns aux autres de façon complexe. Ce travail est organisé selon trois axes. D’abord, la structure dedépendance des paramètres du modèle, induite par la modélisation imbriquée, est modélisée de façon rigoureuse grâce à la théorie des copules. Puis, deux méthodes d’analyse de sensibilité adaptées aux modèles à paramètres d’entrée corrélés sont présentées : l’une est basée sur l’analyse de la distribution de la réponse du modèle, l’autre sur la décomposition de la covariance. Enfin, un cadre de travail inspiré de la théorie des graphes est proposé pour la description de l’imbrication des modèles. La méthodologie proposée est appliquée à des exemples industriels d’envergure : un modèle multiéchelles de calcul des propriétés mécaniques du béton par une méthode d’homogénéisation et un modèle multiphysique de calcul de dommage sur la culasse d’un moteur diesel. Les résultats obtenus fournissent des indications importantes pour une amélioration significative de la performance d’une structure.

  • Titre traduit

    Global sensitivity analysis for nested and multiscale modelling


  • Résumé

    This thesis is a contribution to the nested modelling of complex systems. A global methodology to quantify uncertainties and their origins in a workflow composed of several models that can be intricately linked is proposed. This work is organized along three axes. First, the dependence structure of the model parameters induced by the nested modelling is rigorously described thanks to the copula theory. Then, two sensitivity analysis methods for models with correlated inputs are presented : one is based on the analysis of the model response distribution and the other one is based on the decomposition of the covariance. Finally, a framework inspired by the graph theory is proposed for the description of the imbrication of the models. The proposed methodology is applied to different industrial applications : a multiscale modelling of the mechanical properties of concrete by homogenization method and a multiphysics approach of the damage on the cylinder head of a diesel engine. The obtained results provide the practitioner with essential informations for a significant improvement of the performance of the structure.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?