Relation entre synthèse, microstructure et propriétés électrochimiques d'hydroxydes doubles lamellaires (HDL)

par Azzam Faour

Thèse de doctorat en Chimie, Sciences des Matériaux

Sous la direction de Christine Taviot-Gueho et de Vanessa Prevot.

Le président du jury était Christine Mousty.

Le jury était composé de Christian Ruby, Nathalie Steunou, Bertrand Devouard.

Les rapporteurs étaient Christian Ruby, Nathalie Steunou.


  • Résumé

    Ce travail est consacré à la synthèse de phases d’Hydroxydes Doubles Lamellaire (HDL) [NiAl-CO32-] à morphologies contrôlées et à l’étude de la relation entre leurs propriétés structurales / microstructurales et leurs propriétés électrochimiques. Les phases HDL sont préparées par un nouveau procédé de synthèse, basé sur un traitement hydrothermal en présence d’acides aminés. Nous avons mis en évidence l’influence de plusieurs paramètres de synthèse tels que la quantité d’acide aminé, la concentration de sels métalliques, le pH du milieu ainsi que la température et le temps du traitement hydrothermal ou encore la nature de l’acide aminé. Trois phases présentant différents degrés de cristallinité et différentes morphologies et représentatives des échantillons synthétisés, ont été plus particulièrement étudiées. Leur structure et microstructure ont été déterminées par affinement Rietveld en utilisant des données de diffraction des rayons X à haute résolution enregistrées au synchrotron. Ces résultats de DRX combinés avec les observations en microscopie électronique à transmission (MET) indiquent que l'élargissement des raies de diffraction 00l est principalement dû à des effets de taille, tandis que les effets, à la fois de taille et de micro-contrainte contribuent à l’élargissement anisotrope des autres réflexions hkl. Les micro-contraintes sont attribuées à un phénomène d’interstratification (CO32-/SO42-) et d’intercroissance de deux polytypes 2H1 et 3R1, confirmés et quantifiés à l’aide du logiciel DIFFaX. L’étude des propriétés électrochimiques de ces phases par voltammétrie cyclique a permis de montrer que la présence du motif d’empilement 2H1 induit une nette augmentation du signal électrochimique.


  • Résumé

    This work is devoted to the synthesis of NiAl-CO32- Layered Double Hydroxide phases (LDH) with controlled morphology and to the study of the relationship between the structural / microstructural and electrochemical properties. The LDH phases are prepared by a new synthetic method, based on the hydrothermal synthesis in presence of amino acids. We have highlighted the influence of various synthetic parameters such as the amount of amino acid, the concentration of metal salts, the pH of the medium, the temperature and time of hydrothermal treatment as well as the amino acid nature. Three phases of different degrees of crystallinity and different morphologies, representative of synthesized samples were particularly studied. Their structures and microstructures were determined by Rietveld refinement using high-resolution synchrotron powder X-ray diffraction (XRD) data. These XRD results combined with transmission electron microscopy (TEM) observations indicate that the broadening of 00l diffraction lines is mainly due to size effects, while both size and micro-strain effects contribute to the anisotropic broadening of the other hkl reflections. The micro-strain are attributed to an interstratification phenomena (CO32-/SO42-) and intergrowth between rhombohedral 3R1 and hexagonal 2H1 polytypes, confirmed and quantified using the software DIFFaX. The electrochemical properties of these phases are also studied by cyclic voltammetry showing that the presence of the 2H1 stacking motifs results in a net increase of the electrochemical signal.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Clermont Université (Clermont-Ferrand).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.