Jeux différentiels stochastiques à information incomplète

par Christine Grün

Thèse de doctorat en Mathématiques

Sous la direction de Pierre Cardaliaguet et de Catherine Rainer.

Le président du jury était Sylvain Sorin.

Le jury était composé de Pierre Cardaliaguet, Catherine Rainer, Sylvain Sorin, Bernard de Meyer, Bruno Bouchard, Saïd Hamadène, Rainer Buckdahn.

Les rapporteurs étaient Bernard de Meyer, Shige Peng.


  • Résumé

    L'objectif de cette thèse est l'étude des jeux différentiels stochastiques à information incomplète. Nous considérons un jeu à deux joueurs adverses qui contrôlent une diffusion afin de minimiser, respectivement de maximiser un paiement spécifique. Pour modéliser l'incomplétude des informations, nous suivrons la célèbre approche d'Aumann et Maschler. Nous supposons qu'il existe des états de la nature différents dans laquelle le jeu peut avoir lieu. Avant que le jeu commence, l'état est choisi au hasard. L'information est ensuite transmise à un joueur alors que le second ne connaît que les probabilités respectives pour chaque état.Dans cette thèse nous établissons une représentationduale pour les jeux différentiels stochastiques à information incomplète. Ici, nous utilisons largement la théorie des équations différentielles stochastiques rétrogrades (EDSRs), qui se révèle être un outilindispensable dans cette étude. En outre, nous montrons comment, sous certaines restrictions, cette représentation permetde construire des stratégies optimales pour le joueur informé. Ensuite, nous donnons, en utilisant la représentation duale, une preuve particulièrement simple de la semiconvexité de la fonction valeur des jeux différentiels à information incomplète.Un autre partie de la thèse est consacré à des schémas numériques pour les jeux différentiels stochastiques à informationincomplète. Dans la dernière partie nous étudions des jeux d'arrêt optimal en temps continue, appelés jeux de Dynkin, à information incomplète. Nous établissons également une représentation duale, qui est utilisé pour déterminer des stratégies optimales pour le joueur informé dans ce cas.

  • Titre traduit

    Stochastic differential games with incomplete information


  • Résumé

    The objective of this thesis is the study of stochastic differential games with incomplete information. We consider a game with two opponent players who control a diffusion in order to minimize, respectively maximize a certain payoff. To model the information incompleteness we will follow the famous ansatz of Aumann and Maschler. We assume that there are different states of nature in which the game can take place. Before the game starts the state is chosen randomly. The information is then transmitted to one player while the second one only knows the respective probabilities for each state. In this thesis we establish a dual representation for stochastic differential games with incomplete information. Therein we make a vast use of the theory of backward stochastic differential equations (BSDEs), which turns out to be an indispensable tool in this study. Moreover we show how under some restrictions that this representation allows to construct optimal strategies for the informed player.Morover we give - using the dual representation - a strikingly simple proof for semiconvexity of the value function of differential games with incomplete information. Another part of this thesis is devoted to numerical schemes for stochastic differential games with incomplete information. In the last part we investigate continuous time optimal stopping games, so called Dynkin games, with information incompleteness. We show that these games have a value and a unique characterization by a fully non-linear variational PDE for which we provide a comparison principle. Also we establish a dual representation for Dynkin games with incomplete information.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bretagne occidentale (Brest). Service commun de documentation Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.