Rôle de la protéine Sonic Hedgehog dans la migration des cellules musculaires lisses et le recrutement des cellules murales sur les néovaisseaux : implication dans l’action de PDGF BB

par Qinyu Yao

Thèse de doctorat en Sciences, technologie, santé. Biologie cellulaire et physiopathologie

Sous la direction de Alain-Pierre Gadeau.

Soutenue le 09-10-2012

à Bordeaux 2 , dans le cadre de École doctorale Sciences de la vie et de la santé (Bordeaux) .

Le président du jury était Jean-Pierre Savineau.

Le jury était composé de Martin Hagedorn, Muriel Laffargue.

Les rapporteurs étaient Jean-Jacques Feige, Martial Ruat.


  • Résumé

    Recruitment of mural cells, i.e. pericytes and smooth muscle cells (SMC), is essential to improve the maturation of newly formed vessels. One of the major factors involved in this process is the endothelial cell-secreted Platelet-Derived Growth Factor BB (PDGF BB). Sonic hedgehog (Shh) has also been suggested to promote the formation of larger and more muscularized vessels, but the underlying mechanisms involved have not yet been elucidated. We first identified Shh as a target of PDGF BB and found that SMC respond to Shh not only by upregulating the Gli1-dependent canonical pathway, but also by activating ERK1/2 and PI3K-dependent non-canonical pathways. Moreover, we found that PDGF BB-induced SMC migration, involves Shh-dependent PI3K, ERK1/2 and Gli1 activation. In the mouse model of corneal angiogenesis, PDGF BB and Shh were expressed by endothelial cells and mural cells of VEGF-induced newly formed blood vessels, respectively. PDGF BB inhibition reduced Shh expression, confirming that Shh is a target of PDGF BB, as demonstrated by in vitro experiments. Finally, we found that inhibition of either PDGF BB or Shh signaling reduced NG2+ mural cell recruitment into neovessels and subsequently reduced the neo-vessel lifespan. In this work, we demonstrate, for the first time, that Shh is a key mediator of PDGF BB-induced mural cell migration and recruitment into neo-vessels and elucidates the molecular signaling pathway involved in this process.

  • Titre traduit

    Role of Sonic Hedgehog in smooth muscle cell migration and mural cell recruitment onto the neovessels : involvement in PDGF BB action


  • Résumé

    Recruitment of mural cells, i.e. pericytes and smooth muscle cells (SMC), is essential to improve the maturation of newly formed vessels. One of the major factors involved in this process is the endothelial cell-secreted Platelet-Derived Growth Factor BB (PDGF BB). Sonic hedgehog (Shh) has also been suggested to promote the formation of larger and more muscularized vessels, but the underlying mechanisms involved have not yet been elucidated. We first identified Shh as a target of PDGF BB and found that SMC respond to Shh not only by upregulating the Gli1-dependent canonical pathway, but also by activating ERK1/2 and PI3K-dependent non-canonical pathways. Moreover, we found that PDGF BB-induced SMC migration, involves Shh-dependent PI3K, ERK1/2 and Gli1 activation. In the mouse model of corneal angiogenesis, PDGF BB and Shh were expressed by endothelial cells and mural cells of VEGF-induced newly formed blood vessels, respectively. PDGF BB inhibition reduced Shh expression, confirming that Shh is a target of PDGF BB, as demonstrated by in vitro experiments. Finally, we found that inhibition of either PDGF BB or Shh signaling reduced NG2+ mural cell recruitment into neovessels and subsequently reduced the neo-vessel lifespan. In this work, we demonstrate, for the first time, that Shh is a key mediator of PDGF BB-induced mural cell migration and recruitment into neo-vessels and elucidates the molecular signaling pathway involved in this process.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.