Effet de l’oxygène sur le métabolisme énergétique d’Aquifex aeolicus, bactérie hyperthermophile, hydrogénotrophe et microaérophile

par Rafael Uzarraga salazar

Thèse de doctorat en Microbiologie

Sous la direction de Richard Auria.


  • Résumé

    Cette thèse porte sur l'écophysiologie et la physiologie d'une bactérie hyperthermophile et microaérophile, Aquifex aeolicus, cultivée dans différentes conditions d'oxygénation. Au cours de ce travail, trois systèmes expérimentaux (jarres, microcosmes et fermenteur) ont été testés : (1) le nouveau système de jarres qui été mis au point est muni de microplaques de 24 puits couplé à un robot. Il permet d'étudier un grand nombre de facteurs trophiques ou de formulations de milieux de cultures tout en conservant une atmosphère de composition constante, (2) pour l'étude de facteurs trophiques gazeux, l'utilisation des microcosmes a été montrée peu adaptée, amenant même dans certains cas, à des interprétations erronées, et, 3) le fermenteur reste le meilleur outil pour étudier l'influence de la concentration en O2 dissous (pO2) sur le métabolisme d'A. aeolicus. A partir des cinétiques de croissance obtenues en fermenteur, il a été établi que la densité de biomasse est constante et que la vitesse de croissance est maximale pour une pO2 comprise, respectivement, entre 0.006 et 6 mg/L et, entre 1 et 2 mg/L. Pour des pO2 supérieures à 2 mg/L, il a été montré que l'oxygène a un effet toxique sur la croissance d'A. aeolicus. Pour des conditions optimales d'oxygénation (pO2=1.5 mg/L) et lorsque l'H2 (100 mL/min) limite la croissance, le catabolisme énergétique est alors dévié vers la consommation du thiosulfate. En effet, pour les débits d'H2 de 450 et 100 mL/min, d'une part 97 et 79 % de l'O2 sont respectivement réduits par l'hydrogène et d'autre part 3 et 21 % de l'O2 sont respectivement réduits par le thiosulfate.


  • Résumé

    This manuscript addresses the physiology and ecophysiology of the microaerophilic hyperthermophilic bacterium Aquifex aeolicus, grown under different oxygen-supply conditions. Three experimental systems, jar, microcosm and fermentor were tested in those experiments: (1) a newly-engineered jar system containing 24-well microplates coupled to an automated controller. This system allows to study a broad spectrum of trophic factors or culture media formulations while maintaining a constant atmospheric composition; (2) microcosm systems were, here, proved ill-adapted to studying gas-phase trophic factors, and in some cases even to leading to false interpretations; 3) the fermentor system remains the best tool to studying the influence of dissolved O2 concentration (pO2) on A. aeolicus metabolism. Based on in-fermentor growth kinetic curves, we established that biomass density was maximum and constant at a pO2 in the range 0.006 to 6 mg/L and growth rate was maximum at a pO2 of about 2 mg/L. At a pO2 over 2 mg/L, oxygen level had a toxic effect on A. aeolicus growth. Under optimal oxygen supply (pO2 = 1.5 mg/L) and when H2 (100 mL/min) is the growth-limiting factor, energy catabolism is diverted towards thiosulfate consumption: at H2 flow-rates of 450 and 100 mL/min, 97% and 79% of O2 is reduced by hydrogen while 3% and 21% of O2 is reduced by thiosulfate, respectively. Under over-oxygenation conditions (pO2 = 10.5 and 12 mg/L), growth was correlated to high thiosulfate consumption whereas the expression of genes encoding hydrogenases was significantly downregulated and hydrogenase activity was null.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?