Etude de l'évolution spatio-temporelle d'un jet tournant tridimensionnel à masse volumique variable

par Bastien Di pierro

Thèse de doctorat en Mécanique et Physique des Fluides

Sous la direction de Malek Abid et de Muriel Amielh.

Le président du jury était Olivier Simonin.

Le jury était composé de Malek Abid, Muriel Amielh, Olivier Simonin, Maurice Rossi, Marc-Étienne Brachet, Jean-Marc Chomaz, Marc Medale.

Les rapporteurs étaient Maurice Rossi, Marc-Étienne Brachet.


  • Résumé

    La dynamique instable des jets tournants est étudiée, en tenant compte des variations de masse volumique au sein de l'écoulement. Un code de simulation numérique directe permettant de résoudre les équations de Navier-Stokes à masse volumique variable a été développé, en utilisant une méthode originale et efficace pour résoudre le champs de pression. Analytiquement, deux modes instables bidimensionnels ont été mis en évidence, et sont identifiés comme des modes de Couette-Taylor et de Rayleigh-Taylor, ainsi qu'un troisième mode tridimensionnel, du à un couplage de vitesse. La dynamique instable de cet écoulement résulte d'une compétition entre ces trois modes, et les simulations numériques montrent que ces modes perdurent non linéairement. Ensuite, le comportement spatio-temporel de cette instabilité est étudiée par simulation numérique directe, et il a été montré qu'il existe une transition vers des modes absolument instables, sous l'effet du rapport de densité s ainsi que du taux de rotation q. Cette dynamique est également étudiée expérimentalement au travers de plusieurs méthodes de mesures, et la présence de mode globaux auto-entretenus est mise en évidence qui sont en bon accord avec les résultats numériques. Finalement, le phénomène de l'éclatement tourbillonnaire est étudié, et montre le rôle prépondérant de la viscosité réelle. En effet, l'éclatement tourbillonnaire est un mécanisme permettant de soulager le système de l'intensification de la vorticité, au travers de la viscosité, alors qu'il n'apparaît pas en traitant les équations d'Euler tronquées.


  • Résumé

    The unstable dynamics of a swirling jet flow is studied, including density variations within the flow. A direct numerical simulation method was developed to solve variable density Navier-Stokes equations, using an accurate and efficient pressure solver. Analitically, two unstable bi-dimensionnal modes are highlighted, and are identified as Couette-Taylor and Rayleigh-Taylor modes. A three-dimensionnal mode is also highlighted, wich is created by the shear. Numerical simulations show that those modes are nonlinearly persistant. Then, the spatio-temporal instability behaviour is studied numerically, and show that the instability undergoes to a convective/absolute transition with density ratio s and rotation rate q. This dynamic is also studied experiementally through different methods, and Global selfsustained modes are highlighted wich are in ggod agreement with numerical results. Finally, the vortex breakdown phenomenon is studied, and show the crucial role of real viscosity. Indeed, the vorticity intensification is relaxed through the viscosity effect, while it is not treating the truncated Euler Equations.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?