Thèse soutenue

Logique dans le facteur hyperfini : Géométrie de l' interaction et complexité

FR
Auteur / Autrice : Thomas Seiller
Direction : Jean-Yves Girard
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 13/11/2012
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques et Informatique de Marseille (Marseille ; 1994-....)
Jury : Président / Présidente : Olivier Laurent
Examinateurs / Examinatrices : Jean-Yves Girard, Olivier Laurent, Pierre-louis Curien, Martin Hyland, Philippe Scott, Laurent Régnier
Rapporteurs / Rapporteuses : Pierre-louis Curien, Martin Hyland

Résumé

FR  |  
EN

Cette thèse est une étude de la géométrie de l'interaction dans le facteur hyperfini (GdI5), introduite par Jean-Yves Girard, et de ses liens avec les constructions plus anciennes. Nous commençons par montrer comment obtenir des adjonctions purement géométriques comme une identité entre des ensembles de cycles apparaissant entre des graphes. Il est alors possible, en choisissant une fonction qui mesure les cycles, d'obtenir une adjonction numérique. Nous montrons ensuite comment construire, sur la base d'une adjonction numérique, une géométrie de l'interaction pour la logique linéaire multiplicative additive où les preuves sont interprétées par des graphes. Nous expliquons également comment cette construction permet de définir une sémantique dénotationnelle de MALL, et une notion de vérité. Nous étudions finalement une généralisation de ce cadre afin d'interpréter les exponentielles et le second ordre. Les constructions sur les graphes étant paramétrées par une fonction de mesure des cycles, nous entreprenons ensuite l'étude de deux cas particuliers. Le premier s'avère être une version combinatoire de la GdI5, et nous obtenons donc une interprétation géométrique de l'orthogonalité basée sur le déterminant de Fuglede-Kadison. Le second cas particulier est une version combinatoire des constructions plus anciennes de la géométrie de l'interaction, où l'orthogonalité est basée sur la nilpotence. Ceci permet donc de comprendre le lien entre les différentes versions de la géométrie de l'interaction, et d'en déduire que les deux adjonctions — qui semblent à première vue si différentes — sont des conséquences d'une même identité géométrique.