Approaches to implement and evaluate aggregated search

par Arlind Kopliku

Thèse de doctorat en Informatique

Sous la direction de Mohan Boughanem.

Soutenue en 2011

à Toulouse 3 .


  • Pas de résumé disponible.


  • Résumé

    La recherche d'information agrégée peut être vue comme un troisième paradigme de recherche d'information après la recherche d'information ordonnée (ranked retrieval) et la recherche d'information booléenne (boolean retrieval). Les deux paradigmes les plus explorés jusqu'à aujourd'hui retournent un ensemble ou une liste ordonnée de résultats. C'est à l'usager de parcourir ces ensembles/listes et d'en extraire l'information nécessaire qui peut se retrouver dans plusieurs documents. De manière alternative, la recherche d'information agrégée ne s'intéresse pas seulement à l'identification des granules (nuggets) d'information pertinents, mais aussi à l'assemblage d'une réponse agrégée contenant plusieurs éléments. Dans nos travaux, nous analysons les travaux liés à la recherche d'information agrégée selon un schéma général qui comprend 3 parties: dispatching de la requête, recherche de granules d'information et agrégation du résultat. Les approches existantes sont groupées autours de plusieurs perspectives générales telle que la recherche relationnelle, la recherche fédérée, la génération automatique de texte, etc. Ensuite, nous nous sommes focalisés sur deux pistes de recherche selon nous les plus prometteuses: (i) la recherche agrégée relationnelle et (ii) la recherche agrégée inter-verticale. * La recherche agrégée relationnelle s'intéresse aux relations entre les granules d'information pertinents qui servent à assembler la réponse agrégée. En particulier, nous nous sommes intéressés à trois types de requêtes notamment: requête attribut (ex. Président de la France, PIB de l'Italie, maire de Glasgow,. . . ), requête instance (ex. France, Italie, Glasgow, Nokia e72,. . . ) et requête classe (pays, ville française, portable Nokia,. . . ). Pour ces requêtes qu'on appelle requêtes relationnelles nous avons proposés trois approches pour permettre la recherche de relations et l'assemblage des résultats. Nous avons d'abord mis l'accent sur la recherche d'attributs qui peut aider à répondre aux trois types de requêtes. Nous proposons une approche à large échelle capable de répondre à des nombreuses requêtes indépendamment de la classe d'appartenance. Cette approche permet l'extraction des attributs à partir des tables HTML en tenant compte de la qualité des tables et de la pertinence des attributs. Les différentes évaluations de performances effectuées prouvent son efficacité qui dépasse les méthodes de l'état de l'art. Deuxièmement, nous avons traité l'agrégation des résultats composés d'instances et d'attributs. Ce problème est intéressant pour répondre à des requêtes de type classe avec une table contenant des instances (lignes) et des attributs (colonnes). Pour garantir la qualité du résultat, nous proposons des pondérations sur les instances et les attributs promouvant ainsi les plus représentatifs. Le troisième problème traité concerne les instances de la même classe (ex. France, Italie, Allemagne,. . . ). Nous proposons une approche capable d'identifier massivement ces instances en exploitant les listes HTML. Toutes les approches proposées fonctionnent à l'échelle Web et sont importantes et complémentaires pour la recherche agrégée relationnelle. Enfin, nous proposons 4 prototypes d'application de recherche agrégée relationnelle. Ces derniers peuvent répondre des types de requêtes différents avec des résultats relationnels. Plus précisément, ils recherchent et assemblent des attributs, des instances, mais aussi des passages et des images dans des résultats agrégés. Un exemple est la requête ``Nokia e72" dont la réponse sera composée d'attributs (ex. Prix, poids, autonomie batterie,. . . ), de passages (ex. Description, reviews,. . . ) et d'images. Les résultats sont encourageants et illustrent l'utilité de la recherche agrégée relationnelle. * La recherche agrégée inter-verticale s'appuie sur plusieurs moteurs de recherche dits verticaux tel que la recherche d'image, recherche vidéo, recherche Web traditionnelle, etc. Son but principal est d'assembler des résultats provenant de toutes ces sources dans une même interface pour répondre aux besoins des utilisateurs. Les moteurs de recherche majeurs et la communauté scientifique nous offrent déjà une série d'approches. Notre contribution consiste en une étude sur l'évaluation et les avantages de ce paradigme. Plus précisément, nous comparons 4 types d'études qui simulent des situations de recherche sur un total de 100 requêtes et 9 sources différentes. Avec cette étude, nous avons identifiés clairement des avantages de la recherche agrégée inter-verticale et nous avons pu déduire de nombreux enjeux sur son évaluation. En particulier, l'évaluation traditionnelle utilisée en RI, certes la moins rapide, reste la plus réaliste. Pour conclure, nous avons proposé des différents approches et études sur deux pistes prometteuses de recherche dans le cadre de la recherche d'information agrégée. D'une côté, nous avons traité trois problèmes importants de la recherche agrégée relationnelle qui ont porté à la construction de 4 prototypes d'application avec des résultats encourageants. De l'autre côté, nous avons mis en place 4 études sur l'intérêt et l'évaluation de la recherche agrégée inter-verticale qui ont permis d'identifier les enjeux d'évaluation et les avantages du paradigme. Comme suite à long terme de ce travail, nous pouvons envisager une recherche d'information qui intègre plus de granules relationnels et plus de multimédia.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (179 p.)
  • Annexes : Bibliogr. p. 161-179

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2011 TOU3 0286
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.