Étude du vieillissement de polymères isolants utilisés dans le packaging des modules de puissance haute température

par Rabih Khazaka

Thèse de doctorat en Génie électrique

Sous la direction de Pierre Bidan et de Marie-Laure Locatelli.

Soutenue en 2011

à Toulouse 3 .


  • Résumé

    La recherche permanente de l'intégration et/ou du fonctionnement dans des régions chaudes des dispositifs électroniques de puissance se traduit par une augmentation du niveau des contraintes électriques et thermiques imposées à tous leurs constituants. Cela concerne en particulier les constituants des modules de puissance. Comme suite à une étude bibliographique qui a permis d'analyser les différentes structures de packaging pouvant être adaptées à un fonctionnement à haute température, il ressort en particulier un besoin en couches diélectriques minces afin d'isoler les différentes parties du module. Dans ce contexte, les travaux ont porté sur la détermination de la limite d'utilisation en température de deux matériaux diélectriques polymères (un polyimide BPDA/PDA et un parylène fluoré PA-HT), pouvant être aptes à constituer la couche de passivation des puces de carbure de silicium, ou la couche intermétallique ou de protection de surface au sein des modules de puissance. Afin de parvenir à ce but, des caractérisations électriques à l'instant initial (t0) ont été menées sous hautes températures, jusqu'à 400 °C. Ensuite, l'évolution des propriétés (en particulier électriques) des matériaux durant le vieillissement thermique et thermo-oxydatif, à des températures supérieures ou égales à 250 °C, pour des milliers d'heures, a été mesurée et analysée. A t0, le champ de rupture moyen des matériaux reste élevé et supérieur à 2 MV/cm à 300 °C, pour les films les plus épais testés (8 µm). La conductivité DC, dans une gamme de température entre 300 °C et 400 °C, montre un comportement semi-résistif pour le BPDA/PDA et un comportement qui passe d'isolant à semi-résistif pour le PA-HT. Durant le vieillissement sous N2, aucune dégradation du BPDA/PDA n'est observée jusqu'à 360 °C. A 300 °C sous air, une stabilité de la tension de rupture lorsque ce dernier est vieilli sur substrat en silicium (Si), et une dégradation lente dépendante de l'e��paisseur initiale lors du vieillissement sur substrat en acier inoxydable (A. I. ) sont observées. La dégradation se révèle surfacique liée à la présence de l'oxygène ambiant. Elle est d'autant plus prononcée que la température du vieillissement augmente, et apparaît alors également sur les substrats en Si. Le PA-HT déposé sur un substrat en A. I. A été vieilli sous air entre 300 °C et 360 °C. L'étude montre que ces films paraissent prometteurs pour les applications à 300 °C, avec une cristallisation isotherme qui affecte favorablement les propriétés diélectriques du matériau. Pour les températures plus élevées, une dégradation activée thermiquement apparaît et les films inférieurs à 5 µm d'épaisseur, ne peuvent pas dépasser 1000 heures de vieillissement sous air à 360 °C. Par conséquent, en se basant sur les propriétés électriques intrinsèques ainsi que sur leur évolution en vieillissement isotherme, les films de BPDA/PDA et de PA-HT semblent appropriés pour fonctionner pendant de longues durées à 300 °C sous air. Pour les températures plus élevées (360 °C), la stabilité sous air pour de longues durées reste problématique en particulier sur A. I. Par ailleurs, des solutions permettant de limiter la dégradation thermo-oxydative ou paraissant plus prometteuses, ainsi que des traitements thermiques permettant l'amélioration de la résistivité électrique à haute température à t0 sont proposés.

  • Titre traduit

    Study of the aging of insulating polymers used in the high temperature power module packaging


  • Résumé

    The trend for integration and/or high ambient temperature operation of power electronics modules induces higher electrical and thermal stresses on their components. Based on a bibliographic study that allows evaluating different structures of packaging able to operate at high temperatures, thin dielectric layers are needed in order to insulate the different parts of the module. Therefore, the aim of this work was to define the potentiality of two dielectric polymers to operate at high temperatures (the first one is a polyimide BPDA-PDA and the second one is a fluorinated parylene PA-HT), and to be used as passivation layer for silicon carbide semiconductors or as dielectric layer between and on the metal frames. In order to reach the objective, characterizations of the dielectric properties up to 400 °C at the initial time (noted as t0) were performed. Then, the properties evolution (especially electrical ones) during the thermo-oxidative aging for temperature higher than 250 °C and long periods (several thousands of hours) were controlled periodically. At t0, the films show a good dielectric strength and the breakdown field remain higher than 2 MV/cm for the thicker tested films (8 µm). The DC conductivity show semi-resistive values for the BPDA-PDA between 300 °C and 400 °C and the values vary between resistive and semi-resistive ones for the PA-HT in the same temperature range. During the aging under N2, no degradation is observed up to 360 °C for BPDA-PDA polyimide. At 300 °C in air, stability of the breakdown voltage is observed when the BPDA-PDA is aged on Si substrate, while a slow degradation depending on the initial thicknesses is observed for films deposited on stainless steel substrate (S. S. ). This degradation, related to the oxygen presence in air, affect the surface layer and is thermally activated. The degradation appears also for BPDA-PDA on Si substrate at 360 °C in air. The PA-HT films were deposited on S. S. Substrates and aged in air at 300 °C, 340 °C and 360 °C. Results show the potentiality of the material for 300 °C application, with the occurring of cold crystallization that improves the low field dielectric properties. For the higher tested temperatures, thin films (5 µm) seem to be unsuitable for long periods applications and cannot pass 1000 hours at 360 °C. Hence, based on the initial dielectric properties and their evolution during the aging, the two polymers seems to be suitable for 300 °C applications. However, for higher temperatures (360 °C), the stability in air of the two materials, especially on the S. S. Substrate is not insured. Otherwise, solutions against the thermo-oxydative aging seem promising, and thermal treatments allowing the improvement of the electrical resistivity at the initial time are proposed.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (245 p.)
  • Annexes : Bibliogr. p. 229-244

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2011 TOU3 0238
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.