Investigation of doping and photoexcitation in carbon nanotubes using Raman spectroscopy

par Abdul Waheed Anwar

Thèse de doctorat en Nanophysique

Sous la direction de Wolfgang Bacsa et de Pascal Puech.

Soutenue en 2011

à Toulouse 3 .

  • Titre traduit

    Investigation sur le dopage et la photoexcitation des nanotubes de carbone utilisant la spectroscopie Raman


  • Pas de résumé disponible.


  • Résumé

    La spectroscopie Raman est une technique de caractérisation non destructive appropriée pour l'étude des nanotubes des carbone. Des différences dans le décalage spectral des bandes Raman D et G, correspondant aux effets anharmoniques, sont observées lors d'un chauffage des nanotubes de carbone par irradiation photonique intense ou en faisant varier la température d'un thermostat. Les modifications spectrales du mode D sont attribués à des modifications du processus de double résonance Raman en raison de la variation de la structure de bande électronique provoquée par la creation des excitons. L'enquête de l'influence du dopage et de photoexcitation sur la bande G et la D de nanotubes de carbone montrent que la spectroscopie Raman peut être utilisé comme un outil de diagnostic. Les bandes spectrales élargir et décale vers le haut fréquence pour l'azote dopé nanotubes de carbone multi parois. Le décalage vers le haut fréquence pour l'acide sulfurique dopé double parois nanotubes de carbone est attribuée à transfert de charge et la déformation dans le réseau. Nous avons combiné le dopage de l'acide sulfurique et haute pression spectroscopie Raman pour étudier les propriétés de DWCNT. Le DWCNT dopé avec différentes concentrations d'acide sulfurique sous haute pression, suggère un effet de l'ordre des molécules autour de nanotubes à concentrations d'acide supérieur. Spectres Raman de double parois nanotube de carbone individual sur la silice en évidence un éclatement de la bande G grâce aux contributions du tube interne et externe lorsque utilisez une énergie d'excitation en résonance avec le tube métallique interne et tube semionducteurs externe. Les largeurs des bandes sont comparables à ce qui a été observé pour le nanotube de carbone monoparoi individul ou le graphène. Augmentation de la puissance du laser décale la bande G du tube extérieur vers les énergies plus élevées et modifie sa forme en ligne.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (152 p.)
  • Annexes : Bibliogr. p. 45-49, 69-70, 93-95, 122-125, 138, 152

Où se trouve cette thèse ?

  • Bibliothèque : Université Paul Sabatier. Bibliothèque universitaire de sciences.
  • Disponible pour le PEB
  • Cote : 2011 TOU3 0005
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.