Synthesis, microstructural characterization and mechanical properties of nanolaminated Ti3AlxSn(1-x)C2 MAX phases

par Guo-Ping Bei

Thèse de doctorat en Milieux denses, matériaux et composants

Sous la direction de Sylvain Dubois et de Véronique Brunet.

Soutenue en 2011

à Poitiers .

  • Titre traduit

    Synthèse, caractérisation microstructurale et propriétés mécanique de solutions solides nanolamellaires Ti3AlxSn(1-x)C2


  • Résumé

    Les travaux exposés dans cet ouvrage portent sur l'élaboration, la caractérisation microstructurale et les propriétés mécaniques de solutions solides nanolamellaires de phases dites MAX. Les phases MAX représentent une classe exceptionnellement étendue de céramiques. Elles répondent à une formule générale du type Mn+1AXn (n=1, 2 ou 3) où M est un métal de transition, A est un métal des groupes IIIA ou IVA, et X est un métalloïde (C ou N). Nous avons dans un premier temps réalisé l'optimisation de la synthèse, par métallurgie des poudres, de Ti3AlC2 pur. Une nouvelle phase, Ti3SnC2, ayant été découverte au laboratoire en 2007, les travaux se sont alors focalisés sur la synthèse de solutions solides du type Ti3AlxSn(1-x)C2 par pressage isostatique à chaud. Nous nous sommes, par la suite, attachés à la caractérisation microstructurale de ces solutions solides en étudiant notamment les variations du paramètre de maille, du taux de distorsion des octaèdres [Ti6C] et des prismes trigonaux [Ti6AlxSn(1-x)]. Enfin, nous avons déterminé la dureté intrinsèque et le module d'élasticité des différentes solutions solides en fonction du taux de substitution en utilisant la nanoindentation. Par ailleurs, des essais de compression, uniaxiale et sous confinement de gaz, ont été réalisés à température ambiante, afin d'étudier et de comparer les mécanismes de déformation de Ti3AlC2 et de la solution solide Ti3Al0. 8Sn0. 2C2. Les relations entre modifications microstructurales et propriétés mécaniques sont discutées. Nous montrons notamment que Ti3AlC2 et Ti3Al0. 8Sn0. 2C2 peuvent être considérés comme des matériaux "Kinking Non-linear Elastic".


  • Résumé

    The work described in this thesis concerns the elaboration, the microstructural characterization and the mechanical properties of nanolaminated MAX phases solid solutions. The MAX phases represent a large class of ceramics. They are a family of ternary nitrides and carbides, with the general formula Mn+1AXn (n=1, 2 or 3), where M is an early transition metal, A is a metal of the groups IIIA or IVA, and X is either carbon or nitrogen. We performed at first the optimization of the synthesis, by powder metallurgy, of highly pure Ti3AlC2. Since a new MAX phase, Ti3SnC2, has been discovered in the laboratory in 2007, the study has been further focused on the synthesis of Ti3AlxSn(1-x)C2 solid solutions by hot isostatic pressing. In a second step, the microstructural characterization of these solid solutions has been carried out, by studying, in particular, the variation of the cell parameters, the distortion rates of [Ti6C] octahedrons and [Ti6AlxSn(1-x)] trigonal prisms. Finally, we have determined the intrinsic hardness and the elastic modulus of the various solid solutions as a function of the Al content by using the nanoindentation. Besides, uniaxial and gas confining compression tests were realized at room temperature, to study and compare the deformation mechanisms of Ti3AlC2 and Ti3Al0. 8Sn0. 2C2. The relationship between microstructural modifications and mechanical properties are discussed. We show in particular that Ti3AlC2 and Ti3Al0. 8Sn0. 2C2 can be considered as "Kinking Non-linear Elastic" materials.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (IV-149 p.)
  • Annexes : Bibliogr. p. 139-149

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Section Sciences, Techniques et Sport.
  • Non disponible pour le PEB
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.