Numerical modelling of nonlinear interactions of waves with submerged structures : applied to the simulation of wave energy converters

par Etienne Guerber

Thèse de doctorat en Mécanique des fluides

Sous la direction de Michel Benoit.

Le président du jury était Stéphane Abadie.

Le jury était composé de Michel Benoit, Denis Duhamel, Antonio Falcaõ, Stephan Grilli, Clément Buvat.

Les rapporteurs étaient Pierre Ferrant, Bernard Molin.

  • Titre traduit

    Modélisation numérique des interactions non-linéaires entre vagues et structures immergées : appliquée à la simulation de systèmes houlomoteurs


  • Résumé

    Cette thèse présente le développement d'un modèle numérique avancé, capable de simuler les interactions entre des vagues de surface de cambrure quelconque et des corps rigides immergés ayant des mouvements de grande amplitude. Fondé sur la théorie potentielle, il propose une résolution couplée de la dynamique vagues/structure par la méthode implicite de Van Daalen (1993), encore appelée méthode du potentiel d'accélération par Tanizawa (1995). La précision du modèle à deux dimensions est testée sur un ensemble d'applications impliquant le mouvement forcé ou libre d'un cylindre horizontal immergé, de section circulaire : diffraction par un cylindre fixe, radiation par un cylindre en mouvement forcé de grande amplitude, absorption des vagues par le cylindre de Bristol. Pour chaque application, les résultats numériques sont comparés à des résultats expérimentaux ou analytiques issus de la théorie linéaire, avec un bon accord en particulier pour les petites amplitudes de mouvement du cylindre et pour les vagues de faibles cambrures. La génération de vagues irrégulières et la prise en compte d'un second corps cylindrique immergé sont ensuite intégrées au modèle, et illustrées sur des applications pratiques avec des systèmes récupérateurs d'énergie des vagues simples. Enfin, le modèle est étendu en trois dimensions avec des premières applications au cas d'une sphère décrivant des mouvements de grande amplitude


  • Résumé

    This PhD is dedicated to the development of an advanced numerical model for simulating interactions between free surface waves of arbitrary steepness and rigid bodies in high amplitude motions. Based on potential theory, it solves the coupled dynamics of waves and structure with the implicit method by Van Daalen (1993), also named the acceleration potential method by Tanizawa (1995). The precision of this two-dimensional model is tested on a wide range of applications involving the forced motion or free motion of a submerged horizontal cylinder of circular cross-section : diffraction by a fixed cylinder, radiation by a cylinder in specified high amplitude motions, wave absorption by the Bristol cylinder. In each of these applications, numerical results are compared to experimental data or analytical solutions based on the linear wave theory, with a good agreement especially for small amplitude motions of the cylinder and small wave steepnesses. The irregular wave generation by a paddle and the possibility to add an extra circular cylinder are integrated in the model and illustrated on practical applications with simple wave energy converters. The model is finally extended to three dimensions, with preliminary results for a sphere in large amplitude heaving oscillations


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.