Surfaces des espaces homogènes de dimension 3

par Sébastien Cartier

Thèse de doctorat en Mathématiques

Sous la direction de Pascal Romon.

Le président du jury était Frédéric Helein.

Le jury était composé de Pascal Romon, Benoît Daniel, Laurent Hauswirth, Barbara Nelli, Frank Pacard, Joaquin Perez.

Les rapporteurs étaient Antonio Ros.


  • Résumé

    Ce mémoire porte sur l'étude des surfaces minimales et de courbure moyenne constante dans les espaces homogènes de dimension 3. Nous établissons les formules de Sym-Bobenko pour les surfaces de courbure moyenne constante 1/2 de H^2xR et minimales du groupe de Heisenberg, et donnons des exemples de construction de telles immersions par la méthode DPW. Nous montrons également que des propriétés de symétrie passent aux correspondances de type surfaces sœurs et cousines, ce qui entraîne l'existence de graphes entiers de courbure moyenne constante 1/2 à bout vertical dans H^2xR qui ne sont pas de révolution. Nous reprenons ensuite l'étude des bouts verticaux d'immersions de courbure moyenne constante 1/2 dans H^2xR. Nous munissons une famille de graphes entiers d'une structure de variété lisse et en déduisons un analogue pour H^2xR d'un théorème de A. E. Treibergs pour l'espace de Minkowski. Nous nous intéressons également aux déformations des anneaux de révolution. Une conséquence directe est l'existence d'anneaux immergés qui ne sont pas de révolution. Nous construisons notamment des anneaux dont les bouts n'ont pas le même axe. Enfin, nous décrivons les invariants de Nœther correspondant aux isométries des espaces homogènes pour les surfaces minimales et de courbure moyenne constante. Nous utilisons le formalisme de la géométrie de contact qui permet l'écriture de formules explicites en toute généralité, et nous étudions l'évolution des formes de Nœther sous l'action des isométries des espaces homogènes. Nous calculons ces invariants dans le cas des anneaux déformés de H^2xR, et dans celui des anneaux horizontaux du groupe de Heisenberg

  • Titre traduit

    Surfaces in 3-dimensional homogeneous spaces


  • Résumé

    The present dissertation deals with the study of minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces. In a first part, we establish Sym-Bobenko formulæ for constant mean curvature 1/2 surfaces in H^2xR and minimal surfaces in the Heisenberg group, and give examples of construction of such immersions using the DPW method. We also show that certain symmetry properties are shared by sister or cousin surfaces, which implies the existence non rotational entire graphs of constant mean curvature 1/2 in H^2xR with a vertical end.In a second part, we treat in more details the study of vertical ends of constant mean curvature 1/2 immersions in H^2xR. We endow a particular family entire graphs with a structure of smooth manifold and deduce an analogue in H^2xR to a theorem by A. E. Treibergs in the Minkowski space. We are also interested in deforming rotational annuli. A direct consequence is the existence of immersed non rotational annuli, and in particular we construct annuli with ends that do not have the same axis. Finally, we describe the Nœther invariants corresponding to isometries of the ambient homogeneous space for minimal and constant mean curvature surfaces. To do so, we use the formalism of contact geometry which allows general and explicit formulæ. We then study the evolution of Nœther form under the action of isometries in homogeneous spaces. We compute these invariants in the case of deformed annuli in H^2xR, and in the case of horizontal annuli in Heisenberg group


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Communautés d’Universités et d'Etablissements Université Paris-Est. Bibliothèque universitaire.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.