Schémas numériques d'ordre élevé en espace et en temps pour l'équation des ondes

par Cyril Agut

Thèse de doctorat en Mathématiques Appliquées

Sous la direction de Hélène Barucq.


  • Résumé

    Mes travaux de thèse portent sur le développement de schémas numériques d'ordre élevé en temps et en espace pour la simulation de propagation des ondes. Nous avons proposé de discrétiser dans un premier temps l'équation des ondes par rapport au temps, en utilisant une technique de type équation modifiée. Puis nous avons utilisé une méthode d'éléments finis de type Galerkine discontinue pour la discrétisation en espace. En modifiant l'ordre de la discrétisation, nous avons construit des schémas tout aussi précis que ceux déjà existants pour un coût de mise en oeuvre très intéressant. Après avoir validé numériquement la nouvelle méthode, nous nous sommes intéressés à sa stabilité ainsi qu'à son adaptivité en temps et en espace. Pour arriver à cela, nous avons dû faire une étude précise de la stabilité de la méthode de Galerkine discontinue et nous avons proposé des améliorations à cette technique entraînant des gains de temps significatifs.

  • Titre traduit

    High order numerical schemes in space and time for solving the wave equation


  • Résumé

    My work consists in developing some high order numerical schemes in time and space for the modeling of the wave propagation. We have proposed to first discretize the wave equation with respect to the time using the so called Modified Equation Technique. Then, we have used a Discontinuous Galerkine Finite Element method for the space discretization. Switching the classical discretization process, we have constructed schemes as accurate as the classical ones with a numerical cost very interesting. After the numerical validation of this method, we have focused on its stability and on its adaptibility in time and space. To reach these objectives, we have performed a stability analysis of the Discontinuous Galerkin method and we have proposed some improvements to this technique which imply very important gain in terms of computationnal time.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Pau et des Pays de l'Adour. Service Commun de la Documentation. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.