Microscopie de fluorescence résolue en temps et en polarisation pour le suivi d’interactions protéiques en neurobiologie

par Viviane Devauges

Thèse de doctorat en Physique

Sous la direction de Arnaud Dubois et de Sandrine Lévèque-Fort.

Soutenue le 15-12-2011

à Paris 11 , dans le cadre de Ecole doctorale Ondes et Matière (1998-2015 ; Orsay, Essonne) , en partenariat avec Institut des sciences moléculaires d'Orsay (laboratoire) , Laboratoire Charles Fabry (Palaiseau, Essonne) (laboratoire) , Centre Laser de l'Université Paris Sud (Orsay) (laboratoire) et de Laboratoire Charles Fabry de l'Institut d'Optique / Biophotonique (laboratoire) .

Le président du jury était Nathalie Westbrook.

Le jury était composé de Arnaud Dubois, Sandrine Lévèque-Fort, Nathalie Westbrook, Marc Tramier, Jean Salamero, Martin Oheim.

Les rapporteurs étaient Marc Tramier, Jean Salamero.


  • Résumé

    Le suivi des interactions entre protéines, localisées à la membrane plasmique ou à l’intérieur de cellules, a été réalisé au cours de cette thèse par imagerie de fluorescence et par l’analyse de processus dits de FRET (Forster Resonance Energy Transfer). Pour quantifier le FRET entre nos protéines d’intérêt, nous avons choisi le contraste de durée de vie de fluorescence car cette méthode est indépendante de la concentration et de l’intensité de fluorescence. Afin d’obtenir une résolution suffisante pour des problématiques neurobiologiques, un microscope TIRFLIM (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) avait préalablement été développé. Celui-ci nous permet de faire de l’imagerie en plein champ avec une résolution axiale sub-longueur d’onde. Ce dispositif a été calibré et optimisé au cours de cette thèse pour répondre au mieux à des problématiques biologiques. Différentes approches ont ainsi été testées dans le but de calibrer la profondeur de pénétration de l’onde évanescente. Des surfaces plasmoniques ont entre autres été utilisées pour augmenter la sélectivité axiale du montage. Notre microscope a été dédié à l’étude de l’effet du cholestérol sur l’interaction entre la protéine précurseur de l’amyloïde APP, protéine transmembranaire impliquée dans la maladie d’Alzheimer et une de ses enzymes de clivage BACE1. Nous avons ainsi effectué un suivi dynamique de l’effet du cholestérol sur l’interaction entre APP et BACE1 dans des cellules HEK-293 et dans des cultures primaires de neurones d’hippocampe d’embryons de rat, de la membrane plasmique à l’intérieur des cellules grâce à notre dispositif TIRFLIM. La mesure d’anisotropie de fluorescence résolue en temps a également été implémentée sur notre montage. Ces mesures résolues en temps et en polarisation ont permis de mesurer le temps de corrélation rotationnelle de fluorophores et de mettre en évidence de manière qualitative différents niveaux d’homodimérisation de protéines impliquées dans la maladie d’Alzheimer.

  • Titre traduit

    Time and polarisation resolved microscopy to follow proteins interactions in neurobiology


  • Résumé

    In the framework of this thesis, we have used FRET (Forster Resonance Energy Transfer) as a mechanism to follow the interaction of proteins from the plasma membrane to the cytoplasm of cells. To quantify FRET, we have chosen Fluorescence Lifetime Imaging Microscopy (FLIM) since this method is independent of the concentration and intensity of the fluorophores. To have a good axial resolution, a TIRFLIM set-up (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) was developed and this allowed us to perform wide-field imaging with sub-wavelength axial resolution. This set-up was calibrated and optimized in order to answer biological questions. Different approaches were tested in order to measure the penetration depth of the evanescent field and especially plasmonic surfaces were used to further enhance the axial resolution. Our set-up was dedicated to the study of the effect of cholesterol on the interaction between the Amyloid Precursor Protein (APP), a transmembrane protein involved in Alzheimer Disease, and one of its cleaving enzyme (BACE1). We performed a dynamic tracking of APP and BACE1 proximity under the effect of cholesterol, in HEK-293 cells and primary cultures of embryonic rat hippocampal neurons, thanks to our TIRFLIM set-up.Time-resolved fluorescence anisotropy has been implemented on our set-up. This has enabled us to measure the rotational correlation time of fluorophores and to investigate quantitatively different states of homodimerization of proteins involved in Alzheimer’s disease.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?