Diagnostic des systèmes aéronautiques et réglage automatique pour la comparaison de méthodes

par Julien Marzat

Thèse de doctorat en Physique

Sous la direction de Éric Walter.


  • Résumé

    Les travaux présentés dans ce mémoire contribuent à la définition de méthodes pour la détection et le diagnostic de défauts affectant les systèmes aéronautiques. Un système représentatif sert de support d'étude, constitué du modèle non linéaire à six degrés de liberté d'un missile intercepteur, de ses capteurs et actionneurs ainsi que d'une boucle de guidage-pilotage. La première partie est consacrée au développement de deux méthodes de diagnostic exploitant l'information de commande en boucle fermée et les caractéristiques des modèles aéronautiques. La première méthode utilise les objectifs de commande induits par les lois de guidage-pilotage pour générer des résidus indiquant la présence de défauts. Ceci permet la détection des défauts sur les actionneurs et les capteurs, ainsi que leur localisation pour ces derniers. La deuxième méthode exploite la mesure de dérivées des variables d'état (via une centrale inertielle) pour estimer la valeur de la commande réalisée par les actionneurs, sans intégration du modèle non linéaire du système. Le diagnostic est alors effectué en comparant cette estimée avec la valeur désirée, ce qui permet la détection, la localisation et l'identification de défauts multiples sur les actionneurs.La seconde partie propose une méthodologie de réglage automatique des paramètres internes (les hyperparamètres) de méthodes de diagnostic. Ceci permet une comparaison plus objective entre les méthodes en évaluant la meilleure performance de chacune. Le réglage est vu comme un problème d'optimisation globale, la fonction à optimiser étant calculée via la simulation numérique (potentiellement coûteuse) de cas test. La méthodologie proposée est fondée sur un métamodèle de krigeage et une procédure itérative d’optimisation bayésienne, qui permettent d’aborder ce problème à faible coût de calcul. Un nouvel algorithme est proposé afin d'optimiser les hyperparamètres d'une façon robuste vis à vis de la variabilité des cas test pertinents.Mots clés : détection et diagnostic de défauts, guidage-pilotage, krigeage, minimax continu, optimisation globale, redondance analytique, réglage automatique, systèmes aéronautiques.

  • Titre traduit

    Fault diagnosis of aeronautical systems and automatic tuning for method comparison


  • Résumé

    This manuscript reports contributions to the development of methods for fault detection and diagnosis applied to aeronautical systems. A representative system is considered, composed of the six-degree-of-freedom nonlinear model of a surface-to-air missile, its sensors, actuators and the associated GNC scheme. The first part is devoted to the development of two fault diagnosis approaches that take advantage of closed-loop control information, along with the characteristics of aeronautical models. The first method uses control objectives resulting from guidance laws to generate residuals indicative of the presence of faults. This enables the detection of both actuator and sensor faults, and the isolation of sensor faults. The second method exploits the measurement of derivatives of state variables (as provided by an IMU) to estimate the control input as achieved by actuators, without the need to integrate the nonlinear model. Detection, isolation and identification of actuator faults can then be performed by comparing this estimate with the desired control input.The second part presents a new automatic-tuning methodology for the internal parameters (the hyperparameters) of fault diagnosis methods. This allows a fair comparison between methods by evaluating their best performance. Tuning is formalised as the global optimization of a black-box function that is obtained through the (costly) numerical simulation of a set of test cases. The methodology proposed here is based on Kriging and Bayesian optimization, which make it possible to tackle this problem at a very reduced computational cost. A new algorithm is developed to address the optimization of hyperparameters in a way that is robust to the variability of the test cases of interest.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.