Filtrage, segmentation et suivi d'images échographiques : applications cliniques

par Sonia Dahdouh

Thèse de doctorat en Informatique

Sous la direction de Angel Osorio et de Emmanuelle Frénoux.

Soutenue le 23-09-2011

à Paris 11 , dans le cadre de Ecole doctorale Informatique de Paris-Sud , en partenariat avec Laboratoire d'informatique pour la mécanique et les sciences de l'ingénieur (Orsay, Essonne) (laboratoire) et de Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (laboratoire) .


  • Résumé

    La réalisation des néphrolithotomies percutanées est essentiellement conditionnée par la qualité dela ponction calicièle préalable. En effet, en cas d’échec de celle-ci, l’intervention ne peut avoir lieu.Réalisée le plus souvent sous échographie, sa qualité est fortement conditionnée par celle du retouréchographique, considéré comme essentiel par la deuxième consultation internationale sur la lithiase pour limiter les saignements consécutifs à l’intervention.L’imagerie échographique est largement plébiscitée en raison de son faible coût, de l’innocuité del’examen, liée à son caractère non invasif, de sa portabilité ainsi que de son excellente résolutiontemporelle ; elle possède toutefois une très faible résolution spatiale et souffre de nombreux artefacts tels que la mauvaise résolution des images, un fort bruit apparent et une forte dépendance àl’opérateur.L’objectif de cette thèse est de concevoir une méthode de filtrage des données échographiques ainsiqu’une méthode de segmentation et de suivi du rein sur des séquences ultrasonores, dans le butd’améliorer les conditions d’exécution d’interventions chirurgicales telles que les néphrolithotomiespercutanées.Le filtrage des données, soumis et publié dans SPIE 2010, est réalisé en exploitant le mode deformation des images : le signal radiofréquence est filtré directement, avant même la formation del’image 2D finale. Pour ce faire, nous utilisons une méthode basée sur les ondelettes, en seuillantdirectement les coefficients d’ondelettes aux différentes échelles à partir d’un algorithme de typesplit and merge appliqué avant reconstruction de l’image 2D.La méthode de suivi développée (une étude préliminaire a été publiée dans SPIE 2009), exploiteun premier contour fourni par le praticien pour déterminer, en utilisant des informations purementlocales, la position du contour sur l’image suivante de la séquence. L’image est transformée pourne plus être qu’un ensemble de vignettes caractérisées par leurs critères de texture et une premièresegmentation basée région est effectuée sur cette image des vignettes. Cette première étape effectuée, le contour de l’image précédente de la séquence est utilisé comme initialisation afin de recalculer le contour de l’image courante sur l’image des vignettes segmentée. L’utilisation d’informations locales nous a permis de développer une méthode facilement parallélisable, ce qui permettra de travailler dans une optique temps réel.La validation de la méthode de filtrage a été réalisée sur des signaux radiofréquence simulés. Laméthode a été comparée à différents algorithmes de l’état de l’art en terme de ratio signal sur bruitet de calcul de USDSAI. Les résultats ont montré la qualité de la méthode proposée comparativement aux autres. La méthode de segmentation, quant-à elle, a été validée sans filtrage préalable, sur des séquences 2D réelles pour un temps d’exécution sans optimisation, inférieur à la minute pour des images 512*512.

  • Titre traduit

    Filtering, Segmentation and ultrasound images tracking. : clinical applications.


  • Résumé

    The achievement of percutaneous nephrolithotomies is mainly conditioned by the quality of the initial puncture. Indeed, if it is not well performed , the intervention cannot be fulfilled.In order to make it more accurate this puncture is often realized under ultrasound control. Thus the quality of the ultrasound feedback is very critical and when clear enough it greatly helps limiting bleeding.Thanks to its low cost, its non invasive nature and its excellent temporal resolution, ultrasound imaging is considered very appropriate for this purpose. However, this solution is not perfect it is characterized by a low spatial resolution and the results present artifacts due to a poor image resolution (compared to images provided by some other medical devices) and speckle noise.Finally this technic is greatly operator dependent.Aims of the work presented here are, first to design a filtering method for ultrasound data and then to develop a segmentation and tracking algorithm on kidney ultrasound sequences in order to improve the executing conditions of surgical interventions such as percutaneous nephrolithotomies.The results about data filtering was submitted and published in SPIE 2010. The method uses the way ultrasound images are formed to filter them: the radiofrequency signal is directly filtered, before the bi-dimensional reconstruction. In order to do so, a wavelet based method, thresholding directly wavelet coefficients at different scales has been developed. The method is based on a “split and merge” like algorithm.The proposed algorithm was validated on simulated signals and its results compared to the ones obtained with different state of the art algorithms. Experiments show that this new proposed approach is better.The segmentation and tracking method (of which a prospective study was published in SPIE 2009) uses a first contour given by a human expert and then determines, using only local informations, the position of the next contour on the following image of the sequence. The tracking technique was validated on real data with no previous filtering and successfully compared with state of the art methods.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.