Soft UV nanoimprint lithography : a versatile technique for the fabrication of plasmonic biosensors

par Jing Chen

Thèse de doctorat en Physique

Sous la direction de Zhifei Liu et de Anne-Marie Haghiri.

Le président du jury était Philippe Lecoeur.

Le jury était composé de Zhifei Liu, Anne-Marie Haghiri, Philippe Lecoeur, Jumana Boussey, Huiqing Fan, Dongmei Zhu, Bernard Bartenlian.

Les rapporteurs étaient Jumana Boussey, Huiqing Fan.

  • Titre traduit

    Nanoimpression douce assistée au UV : une technique lithographique adaptée à la fabrication de biocapteurs plasmoniques


  • Résumé

    Durant la dernière décennie, la résonance de plasmon de surface (SPR) est devenue très populaire pour effectuer des analyses au cours d’un greffage chimique (ou biochimique) et étudier ainsi des réactions chimiques. Ce travail de thèse avait pour but de développer une méthode lithographique alternative, la nanoimpression assistée UV dite «douce», qui permet de fabriquer des réseaux de nanomotifs sur de très grandes surfaces (voir chapitre 1 - état de l’art) pour générer des nanostructures métalliques SPR intégrables. Les chapitres 2 et 3 étudient les paramètres expérimentaux de la nanoimpression pour obtenir des nanostructures hautement résolues et avec un minimum de défaut. Notre étude optique a été menée ensuite sur des réseaux de nanotrous imprimés dans des films d’or (chapitre 4). Le mécanisme physique du phénomène de transmission assistée par les plasmon est étudié de manière systématique d’après l’évolution de la position du pic de transmission avec les paramètres structuraux. Des mesures réalisées dans un système fluidique ont ensuite montré une réponse à un faible changement de l’indice de réfraction à la surface du réseau. Enfin, le dernier chapitre (chapitre 5) présente une nouvelle géométrie de biocapteurs optique basé sur une structure tri-couche dans une géométrie de type «nanocavité» à plasmon localisé (LSPR). Ces capteurs LSPR à nanocavités permettent d’améliorer le facteur de mérite d’un ordre de grandeur par rapport aux LSPR classiques. Leurs propriétés de résonance sont discutées à l’aide d’outils de simulation numérique. Enfin, nous démontrons qu’un tel capteur possède une grande sensibilité à la détection de biomolécules et serait donc adapté à l’étude d’interactions immunochimiques.


  • Résumé

    During the last decade, surface plasmon resonance (SPR) has become widely used to characterize a biological surface and to characterize binding events in the fields of chemistry and biochemistry. Research in this field has been favoured by the tremendous growth in nanofabrication methods among which soft lithographies are alternatively emerging. The purpose of this thesis work was to develop soft UV nanoimprint lithography, an emerging flexible technology allowing patterning on large area of subwavelength photonic nanostructures. The main advantages offered by soft UV nanoimprint lithography concern the simple patterning procedure and the low cost of the experimental setup (see state-of-art presented in chapter 1). Chapters 2 and 3 present the fabrication of master stamps, the study of nanoimprinting parameters coupled with the optimization of the etching process in order to get metallic nanostructures with limited pattern defects. The physical mechanisms of the transmission phenomenon exalted by surface plasmons were studied based on arrays of imprinted gold nanoholes (chapter 4). Extraordinary light transmission has been experimentally demonstrated. The geometrical effects on the position transmission peak were systematically analyzed. Proof-of-concept measurements performed in simple fluidic device indicate a response to small changes in refractive index in the surface vicinity. Finally, chapter 5 proposes a novel design for the optical sensor which is based on “nanocavities” exhibiting coupled localized plasmons. This LSPR sensor offers an improvement of one order of magnitude of the Figure of Merit compared to classical LSPR sensors. The resonance properties of these innovative nanocavities have been studied from numerical simulations and discussed based on their geometrical dependence. Since this system has demonstrated higher sensitivity for detection of biomolecules, it is thus fully adapted to study immunochemical binding interactions.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.