Enseignement des premières notions de topologie à l'université : une étude de cas

par Stéphanie Bridoux

Thèse de doctorat en Didactique des mathématiques

Sous la direction de Marc Rogalski et de Aline Robert.

Soutenue en 2011

à Paris 7 .


  • Résumé

    Cette recherche trouve son origine dans un constat d'échec ressenti durant plusieurs années concernant un enseignement de topologie dans lequel nous prenons une part active, en première année d'université. Pour mieux en comprendre les causes, nous nous sommes questionnée sur le statut des notions de topologie et sur leurs spécificités dans notre enseignement. Nos premières analyses (Bridoux, 2005) nous ont amenée à mettre en évidence les caractères formalisateurs, unificateurs et généralisateurs des notions de topologie enseignées, constitutifs de la grande distance entre elles et les connaissances antérieures des étudiants (Robert, 1998). Ces analyses révèlent aussi que les premières tâches de topologie proposées dans cet enseignement, notamment les applications immédiates des définitions, nécessitent des adaptations complexes de connaissances anciennes qui sont souvent peu disponibles chez un grand nombre d'étudiants à ce niveau d'enseignement. Notre travail de thèse s'est donc donné comme objectif de développer des pistes d'enrichissement, voire de modifications, de cet enseignement, pouvant mener aux acquisitions visées tout en s'inscrivant dans les contraintes institutionnelles qui le délimitent strictement. À partir d'une étude épistémologique de la genèse et du développement de plusieurs notions de topologie, nous avons précisé les caractères de ces notions, leur fonction et leurs spécificités. Une partie des notions de topologie ont été introduites comme des outils pour résoudre des problèmes, notamment dans le cadre des fonctions, mais ceux-ci ne sont pas accessibles en première année d'université. Cependant c'est cette étude, complétée par une analyse comparative de quelques manuels, qui a contribué à l'élaboration d'un scénario d'enseignement prenant appui sur les analyses précédentes, mais pas toujours directement, intégrant un certain nombre de leviers didactiques et, finalement, susceptible de favoriser les apprentissages en topologie des étudiants, en tenant compte toutefois des contraintes déjà signalées. En nous plaçant dans le cadre théorique de la théorie de l'activité spécifiée aux mathématiques (Vandebrouck et al. , 2008), nous faisons l'hypothèse que ce sont essentiellement les activités des étudiants, organisées par les enseignants, qui contribuent à leurs apprentissages mathématiques. De ce fait, nous avons explicité la description de notre scénario en termes de tâches et d'activités attendues chez les étudiants. Les analyses des déroulements en classe associées à celles des productions des étudiants aux évaluations ont permis d'approcher les apprentissages en topologie effectivement réalisés par les étudiants, en relation avec la nature des tâches. Une diminution significative des échecs dans les tâches de manipulation des définitions a été observée. Les étudiants parviennent à mobiliser les connaissances attendues dans ce type de tâches et surmontent les difficultés des adaptations sur les aspects techniques. Toutefois il leur manque une certaine disponibilité des notions de topologie dans les tâches plus complexes, ce que nous avons pu associer à notre scénario. Ainsi la non prise en compte de la dimension outil des notions de topologie, que nous avons dû consentir pour respecter les contraintes institutionnelles, est sans doute en partie à l'origine des difficultés qui subsistent. À travers cette recherche, nous montrons l'apport des analyses didactiques menées en amont de l'enseignement dans un travail de type ingénierie, mettant ainsi une forme de relief sur les notions pour mieux appréhender ce que leur enseignement doit apporter aux étudiants. Notre travail pointe également toute l'importance de l'inscription des contraintes institutionnelles dans l'élaboration et l'expérimentation d'un scénario d'enseignement. C'est en mettant en relation ces deux dimensions et les progrès réels mais limités des étudiants que nous avons été en mesure d'apprécier la portée du scénario et d'envisager des alternatives mettant cette fois en cause le curriculum.


  • Résumé

    This research started with a failure observation in our classroom since several years concerning a topology teaching at first year of university. To improve our understanding of the causes, we tackled the characters of topology concepts and their specificities in our teaching. Our first analysis (Bridoux, 2005) emphasized the formalizing, unifying and generelazing characters of those concepts in relation with the important distance between the topology concepts and the previous knowledge of students (Robert, 1998). This study also revealed that first topology exercises as using concepts définitions require complex adaptations of previous knowledge that are source of difficulties for a large number of students at this teaching level. That is why our research aims to improve the describing teaching, maybe modify it, to achieve the topology knowledge delimited by the institution and the associated constraints. An epistemological study of the genesis and the development of topological concepts allowed us to clarify the characters of concepts, their function and their specificities. Some of them have been introduced as tools to solve problems about functions but they are too complex for first year university students. However this study completed by an analysis of textbooks led us to build a teaching scenario based on a part of previous work. The scenario integrated didactical tracks to improve our topology teaching and the institutional constraints. The choosed theorical framework is theory of activity specified to mathematics (Vandebrouck and al. , 2008). The main idea is that students activities in classroom, organised by teachers, contribute to mathematical acquisitions. Thus we described our scenario in terms of tasks and expected activities from students. The analysis of sequences in the classroom and students productions have shown a significant failure reduction for the manipulation of concepts definitions and the associated technical aspects. However we observed a lack of availability with more complex tasks that are in relationship with the built scenario. Indeed it does not take into account the tool dimension of topological concepts because of die institutional constraints that delimited the teaching. This research reveals me contribution of didactical analyses that precede an engeenering work. They enrich our understanding of the teaching concepts. Our work points also the major role of the institutional constraints to build and experiment a teaching scenario.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (335 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : 101 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque Universitaire des Grands Moulins.
  • PEB soumis à condition
  • Cote : TL (2011) 091
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.