Décompositions de graphes : quelques limites et obstructions

par Mathieu Chapelle

Thèse de doctorat en Informatique

Sous la direction de Ioan Todinca.

Soutenue le 05-12-2011

à Orléans , dans le cadre de Ecole doctorale Sciences et technologies (Orléans) , en partenariat avec Laboratoire d'informatique fondamentale (Orléans) (laboratoire) .

Le président du jury était Michel Habib.

Le jury était composé de Ioan Todinca, Michel Habib, Cyril Gavoille, Yann Vaxès, Mathieu Liedloff.

Les rapporteurs étaient Cyril Gavoille, Christophe Paul.


  • Résumé

    Les décompositions de graphes, lorsqu’elles sont de petite largeur, sont souvent utilisées pour résoudre plus efficacement des problèmes étant difficiles dans le cas de graphes quelconques. Dans ce travail de thèse, nous nous intéressons aux limites liées à ces décompositions, et à la construction d’obstructions certifiant leur grande largeur. Dans une première partie, nous donnons un algorithme généralisant et unifiant la construction d’obstructions pour différentes largeurs de graphes, en temps XP lorsque paramétré par la largeur considérée. Nous obtenons en particulier le premier algorithme permettant de construire efficacement une obstruction à la largeur arborescente en temps O(ntw+4). La seconde partie de notre travail porte sur l’étude du problème ENSEMBLE [σ, ρ]-DOMINANT, une généralisation des problèmes de domination sur les graphes et caractérisée par deux ensembles d’entiers σ et ρ. Les diverses études de ce problème apparaissant dans la littérature concernent uniquement les cas ou le problème est FPT, lorsque paramétré par la largeur arborescente. Nous montrons que ce problème ne l’est pas toujours, et que pour certains cas d’ensembles σ et ρ, il devient W[1]-difficile lorsque paramétré par la largeur arborescente. Dans la dernière partie, nous étudions la complexité d’un nouveau problème de coloration appelé k-COLORATION ADDITIVE, combinant théorie des graphes et théorie des nombres. Nous montrons que ce nouveau problème est NP-complet pour tout k ≥ 4 fixé, tandis qu’il peut être résolu en temps polynomial sur les arbres pour k quelconque et non fixé.

  • Titre traduit

    Graphs decompositions : some limits and obstructions


  • Résumé

    Graphs decompositions of small width are usually used to solve efficiently problems which are difficult in general. In this thesis, we focus on some limits of these decompositions, and the construction of some obstructions certifying a large width. First, we give a generic algorithm unifying obstructions’ construction for several graph widths, in XP time when parameterized by the considered width. In particular, it gives the first algorithm computing efficiently an obstruction to tree-width in time O(ntw+4). Secondly, we study the parameterized complexity of [σ, ρ]-DOMINATING SET, a generalization of some domination problems characterized by two sets of integers σ and ρ. All known studies focused only on cases where this problem is FPT when parameterized by tree-width. In this work, we show that there are some cases where the problem is no longer FPT, and become W[1]-hard instead. Finally, we study the computational complexity of a new coloration problem, named k-ADDITIVE COLORING, which combines both graph theory and number theory. We show that this new problem is NP-complete for any fixed number k ≥ 4, while it can be solved in polynomial time on trees for any k.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Orléans (Bibliothèque électronique). Service commun de la documentation.Division des affaires générales.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.