Modélisation et commande de microrobots magnétiquement guidés dans le système cardiovasculaire

par Laurent Arcese

Thèse de doctorat en Automatique et traitement du signal

Sous la direction de Antoine Ferreira.

Le président du jury était Sylvain Martel.

Le jury était composé de Antoine Ferreira, Sylvain Martel, Alina Voda, Yann Le Gorrec, Nacim Ramdani, Mathieu Fruchard.

Les rapporteurs étaient Alina Voda, Yann Le Gorrec.


  • Résumé

    La chirurgie minimalement invasive est aujourd’hui une thématique de recherche particulièrement active. Un traitement thérapeutique ciblé et la possibilité d’établir un diagnostic précis grâce à l’utilisation de systèmes miniaturisés peuvent considérablement améliorer de nombreuses pratiques médicales. Le recours à des microrobots actionnés à distance et naviguant dans le système cardiovasculaire ouvre de nouvelles perspectives. L’objectif de cette thèse est de proposer un socle théorique solide concernant i) la modélisation d’un microrobot naviguant dans le système cardiovasculaire, ii) l’élaboration de lois de commande et d’observateurs assurant un bon suivi de trajectoire depuis la zone d’injection jusqu’à une zone cible. La modélisation du système fait intervenir de nombreuses forces : forces hydrodynamiques, forces surfaciques (électrostatique, van der Waals, stériques), forces de contact et poids apparent du microrobot. Ce microrobot est contrôlé dans le système cardiovasculaire par l’application de champs ou de gradients de champ magnétique selon le design du microrobot. La prise en compte de l’ensemble des forces aboutit à une représentation d’état sous la forme d’un système non-linéaire affine en la commande avec dérive comportant de nombreux paramètres physiologiques incertains. Une trajectoire de référence optimisée est déduite du modèle. L’approche de commande adoptée est établie à partir de critères de stabilité du système. Le système étant non-linéaire, une commande de type Lyapunov stabilisante est développée suivant une approche de type backstepping. L’estimation de certains paramètres physiologiques est rendue possible par une commande de type backstepping adaptatif. Un observateur grand gain reconstruit l’état complet du système nécessaire au calcul de la commande. La stabilité et la robustesse de l’ensemble sont établies au travers de nombreuses simulations en présence de bruits de mesure et d’erreurs paramétriques.

  • Titre traduit

    Modeling and control of a magnetically guided microrobot in cardiovascular system


  • Résumé

    Minimally invasive medical procedures are currently an active research aera. A drug targeted therapy and the possibility of establishing an accurate diagnosis through the use of miniaturized systems can greatly improve many medical practices. The use of untethered microrobots navigating in the cardiovascular system opens new perspectives. The objective of this PhD work is to provide a theoretical approach on i) the modeling of a microrobot navigating in the cardiovascular system, ii) the development of control laws and observers to ensure a fine tracking from the injection to a target area. Modeling such as system involves many forces : hydrodynamic forces, surface forces (electrostatic, van derWaals, steric), contact forces and apparent weight of the microrobot. This microrobot is controlled in the cardiovascular system by the application of magnetic fields or magnetic field gradients according to the design of the microrobot. The consideration of all the forces leads to a state representation in the form of a nonlinear system with many physiological uncertain parameters, but gives us sufficient informations to plan an optimal trajectory. The control approach is established based on stability consideration. A Lyapunov-stabilizing control is then developed using a backstepping approach. An adaptive backstepping control law estimates some physiological parameters. A high gain observer reconstructs the full state of the system required for implementing the control approach. Robustness and stability of the controller with respect to noise measurement, parameters variations and uncertainties are illustrated by simulations.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Orléans (Bibliothèque électronique). Service commun de la documentation.Division des affaires générales.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.