Robust algebraic methods for geometric computing

par Angelos Mantzaflaris

Thèse de doctorat en Informatique

Sous la direction de Bernard Mourrain.

Soutenue en 2011

à Nice .

  • Titre traduit

    Méthodes algébriques robustes pour le calcul géométrique


  • Résumé

    Geometric computation in computer aided geometric design and solid modelling calls for solving non-linear polynomial systems in an approximate-yet-certified manner. We introduce new subdivision algorithms that tackle this fundamental problem. In particular, we generalize the univariate so-called continued fraction solver to general dimension. Fast bounding functions, unicity tests projection and preconditioning are employed to speed up convergence. Apart for practical experiments, we provide theoretical bit complexity estimates, as well as bounds in the real RAM model, by means of real condition numbers. A man bottleneck for any real solving method is singular isolated points. We employ local inverse systems and certified numerical computations, to provide certification criteria to treat singular solutions. In doing so, we are able to check existence and uniqueness of singularities of a given multiplicity structure using verification methods, based on interval arithmetic and fixed point theorems. Two major geometric applications are undertaken. First, the approximation of planar semi-algebraic sets, commonly occurring in constraint geometric solving. We present an efficient algorithm to identify connected components and, for a given precision, to compute polygonal and isotopic approximation of the exact set Second, we present an algebraic framework to compute generalized Voronoï diagrams, that is applicable to any diagram type in which the distance from a site can be expressed by a bi-variate polynomial function (anisotropic, power diagram etc. ) In cases where this is not possible (eg. Apollonius diagram, VD of ellipses and so on), we extend the theory to implicitly given distance functions.


  • Résumé

    Le calcul géométrique en modélisation et en CAO nécessite la résolution approchée, et néanmoins certifiée, de systèmes polynomiaux. Nous introduisons de nouveaux algorithmes de sous-division afin de résoudre ce problème fondamental, calculant des développements en fractions continues des coordonnées des solutions. Au-delà des exemples concrets, nous fournissons des estimations de la complexité en bits et des bornes dans le modèle de RAM réelle. La difficulté principale de toute méthode de résolution consiste en les points singuliers isolés. Nous utilisons les systèmes locaux inverses et des calculs numériques certifiés afin d’obtenir un critère de certification pour traiter les solutions singulières. Ce faisant, nous sommes en mesure de vérifier l’existence et l’unicité des singularités d’une structure de multiplicité donnée. Nous traitons deux principales applications géométriques. La première : l’approximation des ensembles semi-algébriques plans, apparaît fréquemment dans la résolution de contraintes géométriques. Nous présentons un algorithme efficace pour identifier les composants connexes et pour calculer les approximations polygonales et isotopiques à l’ensemble exact. Dans un deuxième temps, nous présentons un cadre algébrique afin de calculer des diagrammes de Voronoi. Celui-ci sera applicable à tout type de diagramme dans lequel la distance à partir d’un site peut être exprimé par une fonction polynomiale à deux variables (anisotrope, diagramme de puissance, etc. ) Si cela n’est pas possible (par exemple diagramme de Apollonius, VD des éclipses etc. ), nous étendons la théorie aux distances implicitement données.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (viii-116 p.)
  • Annexes : Bibliographie p. 105-115. Index p. 116. Résumés en français et en anglais.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque Sciences.
  • Non disponible pour le PEB
  • Cote : 11NICE4030
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.