Résolution numérique des transferts par rayonnement et conduction au sein d'un milieu semi-transparent pour une géométrie 3D de forme complexe

par Lionel Trovalet

Thèse de doctorat en Mécanique et énergétique

Sous la direction de Gérard Jeandel et de Fatmir Asllanaj.

Soutenue le 21-10-2011

à Nancy 1 , dans le cadre de EMMA - Ecole Doctorale Energie - Mécanique - Matériaux , en partenariat avec Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) (laboratoire) .

Le président du jury était Daniel Rousse.

Le jury était composé de Jean-Pierre Chabriat, Pedro J.M. Coelho, Stéphane Glockner.

Les rapporteurs étaient Véronique Feldheim, Denis Lemonnier.


  • Résumé

    Ce travail porte sur la résolution numérique des transferts couplés par rayonnement et conduction au sein d'un milieu semi-transparent pour une géométrie 3D de forme complexe. Le rayonnement thermique est simulé par un code de calcul développé durant cette thèse. Ce code résout l'équation du transfert radiatif (ETR) par une méthode aux volumes finis (MVF) avec une formulation " cell-vertex " s'appliquant à des maillages tétraédriques non structurés. Il utilise un schéma de fermeture de type exponentiel, un ordre de parcours ainsi qu'une résolution matricielle innovante pour la MVF appliquée à l'ETR. Le modèle mis en place traite des milieux absorbants, émettants, gris ou non-gris bordés par des surfaces noires ou opaques à réflexion diffuse. Le couplage rayonnement-conduction s'effectue sur le même maillage avec un code d'éléments finis pour la conduction. La validation du code de rayonnement et du couplage passe par de nombreux cas tests issus de la littérature. Il aborde les milieux gris, isotherme avec différentes géométries où les effets de la discrétisation spatiale et angulaire sont observés au travers d'une étude de sensibilité. Trois schémas de fermeture ont été étudiés sur un milieu transparent pour montrer leurs influences sur la précision et la diffusion numérique. Les études des transferts de chaleur couplés traitent le problème de l'équilibre radiatif et du couplage conduction-rayonnement en régime stationnaire ou instationnaire avec les équations adimensionnées. La dernière étude porte sur un milieu non-gris tel que le verre en considérant la conduction et le rayonnement en régime stationnaire avec une méthode spectrale par bande pour la partie radiative

  • Titre traduit

    Computational method for combined radiation and conduction in participating media with complex 3D geometries


  • Résumé

    This work deals with the numerical solution of coupled radiative and conductive heat transfer in participating media in complex 3D geometries. Thermal radiation is simulated by a numerical code developed during this thesis. This code solves the radiative transfer equation (RTE) by a modified finite volume method (FVM) with a cell-vertex formulation applied to unstructured tetrahedral meshes. It uses a closure relation based on an exponential scheme, a marching order map and an innovative matrix solution for the FVM applied to the RTE. The model is applied to absorbing-emitting, grey or non-grey media bounded by black or opaque walls with diffuse reflection. The mesh used for the radiation-conduction coupling is the one used by the finite element code for the conduction. The validation of the radiative code and the coupling are carried out through several test cases taken from the literature. Grey and isothermal media with different geometries are considered, and the effects of the spatial and angular discretizations are observed through a sensitivity study. Three closure schemes have been studied on a transparent medium in order to show their influence on the accuracy and false scattering. Studies of coupled heat transfer are carried out on radiative equilibrium problems and coupled radiation-conduction problems in steady or transient states with the dimensionless equations. Finally a non-grey medium such glass is also studied, considering conduction and radiation in steady state with a spectral band model for radiation


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.