Modélisation conjointe des connaissances multi-points de vue d'un système industriel et de son système de soutien pour l'évaluation des stratégies de maintenance

par Gabriela Medina Oliva

Thèse de doctorat en Automatique, traitement du signal et images

Sous la direction de Benoît Iung et de Philippe Weber.

Le président du jury était Christophe Berenguer.

Le jury était composé de Adolfo Crespo Marquez, Eric Levrat, Paul Munteanu.

Les rapporteurs étaient Christophe Berenguer, François Pérès.


  • Résumé

    Par rapport aux exigences de plus en plus importantes relatives au Maintien en Condition Opérationnelle d'un système industriel, le processus de maintenance joue un rôle fondamental pour l'amélioration de la disponibilité, de la productivité, etc. Pour essayer de contrôler au mieux ces performances, les responsables de maintenance doivent donc être capables de choisir les stratégies de maintenance et les ressources à mettre en oeuvre les plus adaptées aux besoins. Dans un objectif d'aide à la prise de décisions en maintenance, les travaux présentés dans ce mémoire ont pour objet de proposer une méthodologie pour l'élaboration d'un modèle support permettant par simulation d'évaluer les différentes stratégies. La valeur ajoutée de la méthodologie réside dans l'unification, à base de modèles relationnels probabilistes (PRM), des différents types de connaissance nécessaires à la construction de ce modèle d'évaluation. Ce dernier est ainsi construit à partir de motifs génériques et modulables représentatifs des variables décisionnels du système industriel (système principal) et de son système de maintenance. Ces motifs, par instanciation, facilitent la construction des modèles d'applications spécifiques. Cette méthodologie, issue du projet ANR SKOOB, est testée sur le cas applicatif de la maintenance d'un système de production de ferment.

  • Titre traduit

    Multi-point of view knowledge modelling of an industrial system and of its enabler system : a new approach to assessing maintenance strategies


  • Résumé

    Nowadays, the importance of the maintenance function has increased, due to the requirements on the maintain in operational conditions phase (MCO) of the system-of-interest (SI). As well as for the relevant role of maintenance in improving availability, performance efficiency, total plant availability, etc. To control performances, maintenance managers should be able to make some choices about the maintenance strategies and the resources that can fulfil the requirements. Within this context, we propose a methodology to formalize a model allowing to perform simulation to assess maintenance strategies. The scientific contribution of our work is that this approach unify by using a probabilistic relational model (PRM), different kind of knowledge needed to assess maintenance strategies. Knowledge is presented as generic and modular patterns based on PRM. These patterns integrate relevant decisional variables of the system of interest and of its maintenance system. This approach eases the modeling phase for a specific application. This methodology is one of the results of the project ANR SKOOB. This approach was tested on an industrial case for the maintenance of a harvest production process


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.