SiC oxidation processing technology for MOSFETs fabrication

par Aurore Constant

Thèse de doctorat en Physique

Sous la direction de Jean Camassel.

Soutenue le 25-07-2011

à Montpellier 2 en cotutelle avec l'Universitat politécnica de Catalunya , dans le cadre de Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014) , en partenariat avec GES - Groupe d'Etude des Semi conducteurs (laboratoire) .

Le jury était composé de Jean Camassel, Fernando Calle, Ramon Alcubilla, Philippe Godignon.

Les rapporteurs étaient Dominique Planson, José Millán.

  • Titre traduit

    Technologie d'oxydation pour la fabrication de composants MOSFETs en SiC


  • Résumé

    De nos jours, les dispositifs d'électroniques de puissance sont principalement basés sur la technologie silicium qui est mature et très bien établie. Toutefois, le silicium présente quelques limitations importantes concernant les pertes de puissance, le fonctionnement à haute température et la vitesse de commutation. Par ailleurs, la technologie silicium a presque atteint ses limites physiques. Ainsi, une nouvelle génération de dispositifs de puissance à base de nouveaux matériaux doit être développée pour faire face aux futurs défis énergiques. Aujourd'hui, le matériau semi-conducteur le plus prometteur est le carbure de silicium (SiC). SiC est considéré de plus en plus comme le meilleur candidat pour surmonter les limites intrinsèques du silicium pour l'élaboration de dispositifs de haute puissance et haute température. Il montre le meilleur compromis entre les caractéristiques théoriques et les réelles disponibilités commerciales de la matière première et de la maturité de ses procédés technologiques.Cette thèse est axée sur les dispositifs d'alimentation à base de SiC, en particulier, sur l'un des enjeux majeurs de la technologie SiC: le procédé d'oxydation. En effet, le SiC peut être facilement oxydé comme le silicium pour former une fine couche de dioxyde de silicium (SiO2). Ceci fournit une occasion unique de développer des dispositifs Métal-Oxyde-Semiconducteur (MOS), comme en technologie silicium. Malheureusement, la qualité de l'interface oxyde/SiC et la fiabilité de l'oxyde sont des obstacles majeurs à la fabrication de dispositifs MOSFET avancés en SiC. Des solutions alternatives ont été développées pour surmonter ces problèmes. Toutefois, les MOSFETs en SiC ont seulement été récemment commercialisés, principalement en raison des problèmes de fiabilité. Le procédé de fabrication de MOSFETs adapté à la production de masse est encore un défi.Les principaux efforts réalisés dans le cadre de cette thèse concernent le développement des MOSFETs en SiC par l'amélioration du procédé d'oxydation pour la fabrication de l'oxyde de grille. Un nouveau procédé basé sur l'oxydation par Rapid Thermal Processing (RTP) est démontré. De plus, les mécanismes physiques associés à la formation de l'oxyde et des propriétés de l'interface SiO2/SiC sont proposés. Ce procédé d'oxydation a été testé sur le SiC hexagonal (4H-SiC) et le SiC cubique (3C-SiC). En outre, la technologie d'oxydation étudiée a été intégrée dans la fabrication de MOSFETs en 4H-SiC. La fiabilité des composants a été aussi évaluée pour des stress en tension jusqu'à des températures de fonctionnement de 300°C.


  • Résumé

    Power electronic devices are mainly based on the mature and very well established silicon technology. However, silicon exhibits some important limitations regarding power losses, operation temperature and speed of switching. Furthermore, unfortunately the successful silicon technology has almost reached its physical limits. Hence, a new generation of power devices based on new materials must be developed to face the future global energetic challenges. Nowadays, the most promising semiconductor material is silicon carbide (SiC). SiC is increasingly considered as the best candidate to overcome the intrinsic limitations of silicon in developing high-power and high-temperature electronic devices. It shows the best trade-off between theoretical characteristics and real commercial availability of the starting material and maturity of its technological processes.This thesis is focused on SiC-based power devices, particularly, on one of the major issues in SiC technology: the gate oxidation process. Indeed, SiC can be easily oxidized to form a thin silicon dioxide (SiO2) layer. This provides a unique opportunity to develop power Metal Oxide Semiconductor (MOS) devices, as in the Si-based technology. SiC-based power MOSFETs are expected to have great potential for high-speed and low-loss switching devices. Unfortunately, the oxide/SiC interface quality and oxide reliability are major barriers to the fabrication of advanced SiC power MOSFET devices. Alternative solutions have been developed to overcome these problems. However, SiC MOSFETs have only been recently commercially available, mainly due to reliability concerns. The MOSFET process suitable for mass production is still a challenge. The main efforts carried out in the framework of this thesis are addressed towards the development of SiC MOSFETs by improving the current gate oxide process state-of-the-art. A newly gate oxidation process based on rapid thermal processing is demonstrated, and the physical mechanisms associated with oxide formation and the SiO2/SiC interface properties are proposed. This oxidation process has been tested on hexagonal SiC (4H-SiC) and cubic SiC (3C-SiC). Furthermore, the investigated oxidation processing technology is integrated into the fabrication of reliable 4H-SiC MOSFETs, and the bias-stress instability has been evaluated up to operating temperatures of 300 ºC.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.