Etude de la plasticité dans les métaux hexagonaux à l'échelle atomique : dynamique des dislocations par dynamique moléculaire

par Alexandre Poty

Thèse de doctorat en Sciences des matériaux

Sous la direction de Marie-Jeanne Philippe.

Le président du jury était Pierre Becker.

Le jury était composé de Thierry Bretheau, Claude Fressengeas, Noël Jakse, Jean-Marc Raulot, David Rodney, Hong Xu.


  • Résumé

    La mise en forme des matériaux passe par la déformation à l'échelle atomique de sa structure. Cette déformation implique la création et le déplacement de défauts tels que les dislocations. La mobilité des dislocations joue un rôle majeur dans la plasticité des matériaux. Il existe différents types de dislocations se déplaçant sur différents systèmes. Actuellement les systèmes de glissement principaux sont bien connus mais les systèmes secondaires, essentiels à la bonne modélisation du comportement plastique, ne le sont pas. Notre travail est de définir les systèmes principaux et secondaires, de les hiérarchiser et de donner une valeur de la contrainte permettant l'activation de la dislocation. Nous avons pour cela choisi d’utiliser la méthode de la Dynamique Moléculaire associée à des potentiels de type Embedded Atom Method (EAM). Nous avons débuté notre étude par la comparaison des performances des différents potentiels de Zirconium et de Titane publiés dans la littérature par rapport aux propriétés plastiques et élastiques obtenues expérimentalement ou par méthode ab initio. Nous avons ensuite étudié les dislocations coins dans les plans prismatiques 1, basal et pyramidal type 1. Nous avons calculé les cissions critiques d'activation de ces dislocations dans le Zirconium et le Titane. Nous nous sommes enfin intéressés aux énergies de fautes des différents plans de glissement du Zirconium et du Titane. Nous avons pour cela calculé toutes les surfaces γ de ces deux métaux. Nous avons comparé les résultats obtenus par dynamique moléculaire à des résultats obtenus par méthode ab initio. Nous avons ensuite donné un classement des différents plans de glissement

  • Titre traduit

    Study of the plasticity of hexagonal materials at the atomic scale : dynamic of dislocations by molecular dynamics


  • Résumé

    The forming of a material requires the deformation at an atomic level of his structure. This deformation involves the creation and movement of defaults like the dislocations. The dislocations mobility plays a major role in the plasticity of the materials. There are different types of dislocations gliding on different gliding systems. Currently the principal gliding systems are well known but the secondary systems aren't. Our work is to define the principal and the secondary gliding systems, to rank them and to calculate the value of the critical resolved shear stress responsible for the dislocation movement. For that we chose to use Molecular Dynamics with EAM (Embedded Atom Method) potentials. We began our studies by comparing the results of several EAM potentials for Zirconium and Titanium to the plastic and elastic properties obtained experimentally or by ab initio calculation.We studied edge dislocations in the prismatic, basal and pyramidal 1 planes. We calculated the critical resolved shear stress of these dislocations in Zirconium and Titanium. Finally we got interested in the fault energies of several gliding planes of Zirconium and Titanium. For that we calculated the γ surfaces of those planes. We compared results obtained by molecular dynamics to results obtained by ab initio calculation. We finally gave a classification of those planes


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.