Thèse soutenue

Étude des relations microstructure/propriétés de réfractaires magnésie-spinelle : détermination expérimentale et simulation

FR  |  
EN
Auteur / Autrice : Renaud Grasset-Bourdel
Direction : Marc HugerThierry Chotard
Type : Thèse de doctorat
Discipline(s) : Matériaux céramiques et traitements de surface
Date : Soutenance en 2011
Etablissement(s) : Limoges
Partenaire(s) de recherche : autre partenaire : Université de Limoges. Faculté des sciences et techniques

Résumé

FR  |  
EN

Cette thèse avait pour objectif d’étudier les relations existant entre la microstructure de matériaux réfractaires et leurs propriétés thermomécaniques, et, en particulier, à mieux comprendre les paramètres microstructuraux clés permettant de développer un comportement mécanique non-linéaire. A partir de la distribution granulométrique de matériaux magnésie-spinelle industriels, utilisés dans les fours rotatifs de cimenterie pour leur résistance aux chocs thermiques, des matériaux biphasés simplifiés, constitués d’une matrice de magnésie et d’inclusions de spinelle, ont été élaborées en intégrant différentes teneurs en inclusions. Le différentiel de dilatation thermique entre le spinelle et la magnésie induit, pendant le refroidissement, de la microfissuration matricielle autour des inclusions de spinelle. La partie expérimentale de cette étude a permis de clarifier, et de quantifier, le développement de l’endommagement thermique au sein de ces composites magnésie-spinelle durant l’étape de refroidissement, en relation avec leur teneur en inclusions de spinelle. L’influence de cet endommagement thermique sur la non-linéarité du comportement mécanique de ces composites a, ensuite, été étudiée. L’objectif principal de la partie numérique était de construire un modèle 3D, par méthode éléments finis, capable de décrire la microfissuration au sein de ces matériaux magnésiespinelle pendant l’étape de refroidissement post-frittage (haute température = état de contraintes nulles), et pouvant entraîner, après cette étape, un comportement mécanique macroscopique non-linéaire. La conception de Volumes Elémentaires Représentatifs (V. E. R. ) simples, mais quasi-isotropes, associée à l’utilisation d’une méthode d’homogénéisation périodique, et à la mise en oeuvre d’un modèle d’endommagement anisotrope, ont permis de simuler localement la microfissuration matricielle autour des inclusions pendant le refroidissement, ainsi que la croissance de l’endommagement au sein du volume pendant l’essai de traction. Ainsi, les évolutions globales de paramètres simulés homogénéisés, aussi bien pendant le refroidissement que pendant l’essai de traction, se sont avérées être en bon accord avec des résultats expérimentaux obtenus à l’échelle macroscopique.