Composantes de l'espace de Hurwitz

par Orlando Cau

Thèse de doctorat en Mathématiques Pures

Sous la direction de Pierre Dèbes et de Michel Emsalem.

Soutenue le 09-12-2011

à Lille 1 , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) .


  • Résumé

    Le contexte de cette thèse est le problème inverse de la théorie de Galois et en particulier son approche moderne qui consiste à trouver des points rationnels sur des espaces de modules de G-revêtements. Nous nous intéressons plus précisément aux composantes irréductibles des espaces de Hurwitz et à leurs corps de définition. Nos résultats permettent de construire, quel que soit le groupe fini, de telles composantes définies sur Q. Notre méthode laisse de plus une grande latitude quant au type de ramification des revêtement. Ces composantes sont obtenues par déformation de certains revêtements du bord des espaces de modules. Enfin, ces composantes sont aussi compatibles dans une tour d'espaces de Hurwitz ; nous obtenons des systèmes projectifs de composantes de la tour modulaire définis sur Q.

  • Titre traduit

    Components of Hurwitz spaces


  • Résumé

    The context of this thesis is the inverse Galois problem and in particular modern approach of finding rational points on moduli spaces of G-covers. We focus more precisely the components irrédutibles Hurwitz spaces and their field of definition. For any finite group, we can construct such components defined on Q. Our method allows one more flexibility in the type of ramification of the cover. These components are obtained by deformation of certain covers in the border of the moduli spaces. Finally, these components are also compatible in a tower of Hurwitz spaces, we obtain projective systems of components of the modular tower defined on Q.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.