Tunneling spectroscopy of hetero-nanocrystals

par Thanh Hai Nguyen

Thèse de doctorat en Micro et Nanotechnologies

Sous la direction de Bruno Grandidier.

Soutenue le 29-11-2011

à Lille 1 , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) .

  • Titre traduit

    Spectroscopie tunnel des nanocristaux hétérostructure


  • Résumé

    Les nanocristaux semi-conducteurs possèdent des tailles qui se situent entre celles des molécules et des matériaux cristallins. Leurs propriétés physiques sont donc dominées par des effets de confinement quantique et par des états électroniques discrets. Une étude approfondie de leur structure électronique et en particulier de la localisation des porteurs de charge s’avère nécessaire pour pouvoir à plus long terme faire de l’ingénierie de structure de bande des hétérostructures semi-conductrices. La microscopie à effet tunnel est l’outil idéal pour imager et sonder les propriétés électroniques de nanocristaux. Le système peut être comparé à une jonction tunnel à doublé barrière tunnel (chapitre 1). Pour caractériser les effets de Coulomb dans des objets quantiques par spectroscopie tunnel (technique détaillée au chapitre 2), mes travaux de recherche ont tout d’abord porté sur un système modèle : une liaison pendante silicium, dont l’état de charge a pu être modifié de manière contrôlée (chapitre 3). Des nanocristaux cœur-coquille (PbSe/CdSe) à symétrie sphérique ont ensuite été étudiés (chapitre 4). Contrairement aux nanocristaux sans coquille, les expériences révèlent que le transport est dominé par le même type de porteurs de charge à polarisation positive et négative de la jonction. Ces mesures donnent également accès à l’énergie de charge des nanocristaux. Un régime de transport similaire est obtenu pour des nanobâtonnets constitués d’un cœur sphérique CdSe enfermé dans un bâtonnet de CdS (chapitre 5), démontrant la reproductibilité des phénomènes observés par l’hétérostructures cœur-coquille.


  • Résumé

    Semiconductor colloidal nanocrystals are quite attractive, because of their physical properties, such as discrete energy levels. However, devices prepared from semiconductor nanocrystals are still facing limitations due to a high environmental sensitivity of their organic shell. In order to increase their optical properties, core-shell nanocrystals have thus been synthesized. Scanning tunneling microscopy is the appropriate tool to image and probe the electronic properties of individual nanostructures and. This system can be compared to a double barrier tunnel junction, where the transport properties are governed by the transmission probability across both potential barriers (chapter 1). In order to investigate the Coulomb effect in those quantum objects by tunneling spectroscopy (this technique being described in chapter 2), the thesis has first focussed on a prototypical model: an isolated silicon dangling bond, where its charge state has been changed in a controlled manner (chapter 3). Then, PbSe/CdSe core-shell nanocrystals have been studied and a general method is described to correctly identify the electrical nature of the charge carriers in the tunneling spectra (chapter 4). In contrast to the core nanocrystals the transport through core-shell structures reveals, for a majority of nanocrystals, that the same type of charge carrier tunnel on both sides of the apparent gap. Charging peaks are also observed and allow the measurements of the charging energy in these systems. A similar transport regime is obtained for CdSe/CdS dot in rod nanocrystals (chapter 5), demonstrating the reproducibility of the characterized transport phenomena of nanoheterostructure.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.