Modélisation multi-échelle de la déformation plastique de MgO monocristallin : du laboratoire au manteau terrestre

par Jonathan Amodeo

Thèse de doctorat en Sciences des Matériaux

Sous la direction de Patrick Cordier et de Philippe Carrez.


  • Résumé

    Les évènements géologiques de surface, comme le volcanisme ou les séismes, sont le fruit d'une dynamique qui vise à dissiper la chaleur interne de notre planète. Dans le manteau terrestre, les roches sont déformées plastiquement dans des conditions extrêmes de pression, de température et de vitesse de déformation. Malgré les récentes avancées expérimentales, il est impossible de reproduire de telles conditions de déformation en laboratoire. C'est pourquoi nous proposons, dans ce travail de thèse, une approche numérique, basée sur la modélisation multi-échelle de la plasticité, des conditions du laboratoire à celles qui caractérisent le manteau terrestre. Nous avons choisi d'appliquer cette méthode à MgO, phase importante du manteau inférieur.À partir des propriétés de cœur des dislocations, nous avons utilisé la théorie des double-décrochements afin de décrire la mobilité d'une dislocation isolée en fonction de la température et de la contrainte. Nous avons ensuite implémenté, dans un code de Dynamique des Dislocations (DD), les paramètres de mobilité des différents défauts afin de décrire le comportement collectif des dislocations lors d’essais numériques de déformation. Les résultats montrent que les propriétés mécaniques de MgO dépendent fortement de la pression et de la vitesse de déformation.

  • Titre traduit

    Multi-scale modeling of the plasticity of magnesium oxyde single crystal : from laboratory conditions to the Earth’s mantle


  • Résumé

    Surface geological events, like volcanos and earthquakes, are due to the internal dynamics of the Earth which tends to release its internal heat. Inside the Earth's mantle, solid rocks are plastically strained under extreme conditions of pressure, temperature and strainrate. In spite of recent experimental progress, it is still impossible to reach such conditions of deformation. This is why we propose an alternative approach, based on the multi-scale modeling of plasticity, from the laboratory conditions to the Earth's mantle. We have choosen to apply our model to magnesium oxide which is a phase present in the lower mantle.From core properties, we modeled a dislocation thermally activated mobility law based on the kink pair theory. Then, we have incorporated it inside a Dislocation Dynamics code to describe the collective behaviour of dislocations throughout numerical strain experiments. Here we show that MgO mechanical properties depends significantly on pressure and strainrate.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.