Méthodes variationnelles : Applications à l'analyse d'image et au modèle de Frenkel-Kontorova

par Samar Issa

Thèse de doctorat en Mathématiques

Sous la direction de Abdallah El Hamidi et de Mustapha Jazar.

Soutenue le 19-12-2011

à La Rochelle en cotutelle avec l'Université Libanaise (Liban) , dans le cadre de Sciences et ingénierie pour l'information .

Le président du jury était Régis Monneau.

Le jury était composé de Michel Berthier.

Les rapporteurs étaient Gilles Aubert, Vicentiu Radulescu.


  • Résumé

    Cette thèse est décomposée en deux parties. La première est consacrée à l'étude de la restauration d'image et la seconde partie est consacrée à l'étude d'un modèle de Frenkel-Kontorova par des méthodes issues du calcul variationnel et des équations aux dérivées partielles. Au chapitre 1, nous présentons les questions essentielles que nous traiterons dans cette thèse, puis on fait des rappels sur les définitions et quelques propriétés d'espace des fonctions à variations bornées BV , l'espace d'Orlicz et le modèle de Frenkel-Kontorova. Au chapitre 2, nous montrons que les problèmes de minimisation non convexe (restauration d'image) contenant des termes de régularisation sous-linéaires sont mal posés. Au chapitre 3, nous étudions un modèle de restauration avec un terme de régularisation à croissance non standard, proposé par Blomgren et al. : le module du gradient est élevé a une puissance qui dépend elle même du gradient. On montre qu'elle est semi-continue inférieurement pour la topologie faible d'un certain espace d'Orlicz-Sobolev qui lui est associé, ce qui permet un résultat d'existence de la solution. Au chapitre 4, nous étudions un modèle de Frenkel-Kontorova, dont on montre l'existence d'au moins une solution de type travelling wave, u.

  • Titre traduit

    Variational methods : Applications to image analysis and to Frenkel-Kontorova model


  • Résumé

    This thesis is divided into two parts. The first is devoted to the study of image restorationand the second part is devoted to the study of a Frenkel-Kontorova model using methodsfrom the calculus of variations and partial differential equations. In chapter 1, we presentthe key issues we will discuss in this thesis, and recal the denitions and some properties ofspaces of functions of bounded variations BV , Orlicz Sobolev spaces and Frenkel-Kontorovamodel results on image analysis. In chapter 2, we show that the non-convex minimizationproblems (restoration image) involving sublinear regularizing terms are ill-posed. In chapter3, we study a model of restoration with nonstandard increasing regularizing terms,proposedby Blomgren. We show that is lower semi-continuous in the weak topologie of some Sobolev-Orlicz space associated with it, which allows existence result of the solution. In Chaptre 4, we study a Frenkel-Kontorova model, that we show existence of at least a traveling wave type solution, u.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de La Rochelle. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.