Simulation Numérique Directe des sprays dilués anisothermes avec le Formalisme Eulérien Mésoscopique

par Jérôme Dombard

Thèse de doctorat en Dynamique des fluides

Sous la direction de Thierry Poinsot et de Laurent Selle.

Soutenue le 20-10-2011

à Toulouse, INPT .


  • Résumé

    Le contexte général de cette thèse est la Simulation Numérique Directe des écoulements diphasiques dilués anisothermes. Un accent particulier est mis sur la détermination précise de la dispersion des particules et du transfert de chaleur entre la phase porteuse et dispersée. Cette dernière est décrite à l’aide d’une approche Eulérienne aux moments : le Formalisme Eulérien Mésoscopique (FEM) [41, 123], récemment étendu aux écoulements anisothermes [78]. Le principal objectif de ce travail est de déterminer si ce formalisme est capable de prendre en compte de manière précise l’inertie dynamique et thermique des particules dans un écoulement turbulent, et particulièrement dans une configuration avec un gradient moyen. Le code de calcul utilisé est AVBP. La simulation numérique d’un spray dilué avec une approche Eulerienne soulève des questions supplémentaires sur les méthodes numériques et les modèles employés. Ainsi, les méthodes numériques spécifiques aux écoulements diphasiques implémentées dans AVBP [69, 103, 109] ont été testées et revisitées. L’objectif est de proposer une stratégie numérique précise et robuste qui résiste aux forts gradients de fraction volumique de particule provoqués par la concentration préférentielle [132], tout en limitant la diffusion numérique. Ces stratégies numériques sont comparées sur une série de cas tests de complexité croissante et des diagnostics pertinents sont proposés. Par exemple, les dissipations dues `a la physique et au numérique sont extraites des simulations et quantifiées. Le cas test du tourbillon en deux dimensions chargé en particules est suggéré comme une configuration simple pour mettre en évidence l’impact de l’inertie des particules sur leur champ de concentration et pour discriminer les stratégies numériques. Une solution analytique est aussi proposée pour ce cas dans la limite des faibles nombres de Stokes. Finalement, la stratégie numérique qui couple le schéma centré d’ordre élevé TTGC et une technique de stabilisation, aussi appelée viscosité artificielle, est celle qui fournit les meilleurs résultats en terme de précision et de robustesse. Les paramètres de viscosité artificielle (c'est-à-dire les senseurs) doivent néanmoins être bien choisis. Ensuite, la question des modèles nécessaires pour d´écrire correctement la dispersion des particules dans une configuration avec un gradient moyen est abordée. Pour ce faire, un des modèles RUM (appel´e AXISY-C), proposé par Masi [78] et implémenté dans AVBP par Sierra [120], est validé avec succès dans deux configurations: un jet plan diphasique anisotherme 2D et 3D. Contrairement aux anciens modèles RUM, les principales statistiques de la phase dispersée sont désormais bien prédites au centre et aux bords du jet. Finalement, l’impact de l’inertie thermique des particules sur leur température est étudié. Les résultats montrent un effet important de cette inertie sur les statistiques mettant en évidence la nécessité pour les approches numériques de prendre en compte ce phénomène. Ainsi, l’extension du FEM aux écoulements anisothermes, c’est-à-dire les flux de chaleur RUM (notés RUM HF), est implémentée dans AVBP. L’impact des RUM HF sur les statistiques de température des particules est ensuite évalué sur les configurations des jets 2D et 3D. Les champs Eulériens sont comparés à des solutions Lagrangiennes de référence calculées par B. Leveugle au CORIA et par E. Masi à l’IMFT pour les jets 2D et 3D, respectivement. Les résultats montrent que les RUM HF améliorent la prédiction des fluctuations de température mésoscopique, et dans une moindre mesure la température moyenne des particules en fonction de la configuration. Les statistiques Lagrangiennes sont retrouvées lorsque les RUM HF sont pris en compte alors que les résultats sont dégradés dans le cas contraire.

  • Titre traduit

    Direct Numerical Simulation of non-isothermal dilute sprays using the Mesoscopic Eulerian Formalism


  • Résumé

    This work addresses the Direct Numerical Simulation of non-isothermal turbulent flows laden with solid particles in the dilute regime. The focus is set on the accurate prediction of heat transfer between phases and of particles dispersion. The dispersed phase is described by an Eulerian approach : the Mesoscopic Eulerian Formalism [41, 123], recently extended to non-isothermal flows [78]. The main objective of this work is to assess the ability of this formalism to accurately account for both dynamic and thermal inertia of particles in turbulent sheared flows. The CFD code used in this work is AVBP. The numerical simulation of dilute sprays with an Eulerian approach calls for specific modelling and raises additional numerical issues. First, the numerical methods implemented in AVBP for two-phase flows [69, 103, 109] were tested and revisited. The objective was to propose an accurate and robust numerical strategy that withstands the steep gradients of particle volume fraction due to preferential concentration [132] with a limited numerical diffusion. These numerical strategies have been tested on a series of test cases of increasing complexity and relevant diagnostics were proposed. In particular, the two-dimensional vortex laden with solid particles was suggested as a simple configuration to illustrate the effect of particle inertia on their concentration profile and to test numerical strategies. An analytical solution was also derived in the limit of small inertia. Moreover, dissipations due to numerics and to physical effects were explicitly extracted and quantified. Eventually, the numerical strategy coupling the highorder centered scheme TTGC with a stabilization technique –the so called artificial viscosity– proved to be the most accurate and robust alternative in AVBP if an adequate set-up is used (i.e. sensors). Then, the issue of the accurate prediction of particle dispersion in configurations with a mean shear was adressed. One of the RUM model (denoted AXISY-C), proposed by Masi [78] and implemented by Sierra [120], was successfully validated in a two-dimensional and a three-dimensional non-isothermal jet laden with solid particles. Contrary to the former RUM models [63, 103], the main statistics of the dispersed phase were recovered at both the center and the edges of the jet. Finally, the impact of the thermal inertia of particles on their temperature statistics has been investigated. The results showed a strong dependency of these statistics to thermal inertia, pinpointing the necessity of the numerical approaches to account for this phenomenon. Therefore, the extension of the MEF to non isothermal conditions, i.e. the RUM heat fluxes, has been implemented in AVBP. The impact of the RUM HF terms on the temperature statistics was evaluated in both configurations of 2D and 3D jets. Eulerian solutions were compared with Lagrangian reference computations carried out by B. Leveugle at CORIA and by E. Masi at IMFT for the 2D and 3D jets, respectively. Results showed a strong positive impact of the RUM HF on the fluctuations of mesoscopic temperature, and to a lesser extent on the mean mesoscopic temperature depending of the configuration. Neglecting the RUM HF leads to erroneous results whereas the Lagrangian statistics are recovered when they are accounted for.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.