Optimisation multiobjectif de réseaux de transport de gaz naturel

par Guillermo Hernandez-Rodriguez

Thèse de doctorat en Génie des Procédés et de l'Environnement

Sous la direction de Catherine Azzaro-Pantel.

Soutenue le 19-09-2011

à Toulouse, INPT .


  • Résumé

    L'optimisation de l'exploitation d'un réseau de transport de gaz naturel (RTGN) est typiquement un problème d'optimisation multiobjectif, faisant intervenir notamment la minimisation de la consommation énergétique dans les stations de compression, la maximisation du rendement, etc. Cependant, très peu de travaux concernant l'optimisation multiobjectif des réseaux de gazoducs sont présentés dans la littérature. Ainsi, ce travail vise à fournir un cadre général de formulation et de résolution de problèmes d'optimisation multiobjectif liés aux RTGN. Dans la première partie de l'étude, le modèle du RTGN est présenté. Ensuite, diverses techniques d'optimisation multiobjectif appartenant aux deux grandes classes de méthodes par scalarisation, d'une part, et de procédures évolutionnaires, d'autre part, communément utilisées dans de nombreux domaines de l'ingénierie, sont détaillées. Sur la base d'une étude comparative menée sur deux exemples mathématiques et cinq problèmes de génie des procédés (incluant en particulier un RTGN), un algorithme génétique basé sur une variante de NSGA-II, qui surpasse les méthodes de scalarisation, de somme pondérée et d'ε-Contrainte, a été retenu pour résoudre un problème d'optimisation tricritère d'un RTGN. Tout d'abord un problème monocritère relatif à la minimisation de la consommation de fuel dans les stations de compression est résolu. Ensuite un problème bicritère, où la consommation de fuel doit être minimisée et la livraison de gaz aux points terminaux du réseau maximisée, est présenté ; l'ensemble des solutions non dominées est répresenté sur un front de Pareto. Enfin l'impact d'injection d'hydrogène dans le RTGN est analysé en introduisant un troisième critère : le pourcentage d'hydrogène injecté dans le réseau que l'on doit maximiser. Dans les deux cas multiobjectifs, des méthodes génériques d'aide à la décision multicritère sont mises en oeuvre pour déterminer les meilleures solutions parmi toutes celles déployées sur les fronts de Pareto.

  • Titre traduit

    Multiobjective optimization of natural gas transportation networks


  • Résumé

    The optimization of a natural gas transportation network (NGTN) is typically a multiobjective optimization problem, involving for instance energy consumption minimization at the compressor stations and gas delivery maximization. However, very few works concerning multiobjective optimization of gas pipelines networks are reported in the literature. Thereby, this work aims at providing a general framework of formulation and resolution of multiobjective optimization problems related to NGTN. In the first part of the study, the NGTN model is described. Then, various multiobjective optimization techniques belonging to two main classes, scalarization and evolutionary, commonly used for engineering purposes, are presented. From a comparative study performed on two mathematical examples and on five process engineering problems (including a NGTN), a variant of the multiobjective genetic algorithm NSGA-II outmatches the classical scalararization methods, Weighted-sum and ε-Constraint. So NSGA-II has been selected for performing the triobjective optimization of a NGTN. First, the monobjective problem related to the minimization of the fuel consumption in the compression stations is solved. Then a biojective problem, where the fuel consumption has to be minimized, and the gas mass flow delivery at end-points of the network maximized, is presented. The non dominated solutions are displayed in the form of a Pareto front. Finally, the study of the impact of hydrogen injection in the NGTN is carried out by introducing a third criterion, i.e., the percentage of injected hydrogen to be maximized. In the two multiobjective cases, generic Multiple Choice Decision Making tools are implemented to identify the best solution among the ones displayed of the Pareto fronts.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.