Planification de mouvement pour systèmes anthropomorphes

par Sébastien Dalibard

Thèse de doctorat en Systèmes informatiques

Sous la direction de Jean-Paul Laumond.

Soutenue le 22-07-2011

à Toulouse, INPT .


  • Résumé

    L'objet de cette thèse est le développement et l'étude des algorithmes de planification de mouvement pour les systèmes hautement dimensionnés que sont les robots humanoïdes et les acteurs virtuels. Plusieurs adaptations des méthodes génériques de planification de mouvement randomisées sont proposées et discutées. Une première contribution concerne l'utilisation de techniques de réduction de dimension linéaire pour accélérer les algorithmes d'échantillonnage. Cette méthode permet d'identifier en ligne quand un processus de planification passe par un passage étroit de l'espace des configurations et adapte l'exploration en fonction. Cet algorithme convient particulièrement bien aux problèmes difficiles de la planification de mouvement pour l'animation graphique. La deuxième contribution est le développement d'algorithmes randomisés de planification sous contraintes. Il s'agit d'une intégration d'outils de cinématique inverse hiérarchisée aux algorithmes de planification de mouvement randomisés. On illustre cette méthode sur différents problèmes de manipulation pour robots humanoïdes. Cette contribution est généralisée à la planification de mouvements corps-complet nécessitant de la marche. La dernière contribution présentée dans cette thèse est l'utilisation des méthodes précédentes pour résoudre des tâches de manipulation complexes par un robot humanoïde. Nous présentons en particulier un formalisme destiné à représenter les informations propres à l'objet manipulé utilisables par un planificateur de mouvement. Ce formalisme est présenté sous le nom d'« objets documentés».

  • Titre traduit

    Motion planning for anthropomorphic systems


  • Résumé

    This thesis deals with the development and analysis of motion planning algorithms for high dimensional systems: humanoid robots and digital actors. Several adaptations of generic randomized motion planning methods are proposed and discussed. A first contribution concerns the use of linear dimensionality reduction techniques to speed up sampling algorithms. This method identifies on line when a planning process goes through a narrow passage of some configuration space, and adapts the exploration accordingly. This algorithm is particularly suited to difficult problems of motion planning for computer animation. The second contribution is the development of randomized algorithms for motion planning under constraints. It consists in the integration of prioritized inverse kinematics tools within randomized motion planning. We demonstrate the use of this method on different manipulation planning problems for humanoid robots. This contribution is generalized to whole-body motion planning with locomotion. The last contribution of this thesis is the use of previous methods to solve complex manipulation tasks by humanoid robots. More specifically, we present a formalism that represents information specific to a manipulated object usable by a motion planner. This formalism is presented under the name of "documented object".


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.