Lumière dans les milieux atomiques désordonnés : théorie des matrices euclidiennes et lasers aléatoires

par Arthur Goetschy

Thèse de doctorat en Physique

Sous la direction de Sergey E. Skipetrov.

Soutenue le 28-11-2011

à Grenoble , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Laboratoire de Physique et Modélisation des Milieux Condensés (équipe de recherche) .

Le président du jury était Bart Van Tiggelen.

Le jury était composé de Eric Akkermans, Patrick Sebbah, Philippe Frey, Stephen Hall, Jean Hugonnard.

Les rapporteurs étaient Giorgio Parisi, Jean Dalibard, Vladimir e. Kravtsov.


  • Résumé

    Cette thèse présente une étude des propriétés de la lumière émise par des diffuseurs atomiques distribués aléatoirement dans l'espace euclidien, et interagissant avec le champ électromagnétique. Dans ce cadre, une théorie ab initio des lasers aléatoires est formulée en terme des propriétés statistiques de la `matrice de Green'. Cette dernière appartient à la famille des matrices aléatoires euclidiennes (MAE) pour lesquelles nous développons une théorie analytique donnant notamment accès à la distribution de probabilité de leurs valeurs propres. Dans un premier temps, nous démontrons les équations quantiques microscopiques régissant la dynamique du champ électrique ainsi que celle des opérateurs atomiques, et explicitons comment la matrice de Green (dont les éléments sont égaux à la fonction de Green de l'équation de Helmholtz évaluée entre les différentes paires d'atomes constituant le milieu) émerge naturellement du formalisme quantique. Nous exprimons à la fois l'intensité et le spectre de la lumière en termes des propriétés de la matrice de Green, caractérisons les forces de Langevin quantiques, et montrons de quelle manière le seuil semi-classique d'un laser aléatoire est affecté par la prise en considération des fluctuations quantiques (chapitres 2 et 3). Une description mésoscopique et semi-classique de la lumière diffusée par un grand nombre d'atomes soumis à une pompe externe et distribués aléatoirement dans l'espace libre est présentée dans le quatrième chapitre. Après avoir établi une condition de seuil laser universelle, valide quelle que soit la configuration des atomes, nous démontrons une équation de transport obéie par l'intensité moyenne en présence de gain, discutons différentes approximations de cette dernière (équation de Bethe-Salpeter, équation de Boltzmann, équation de diffusion), établissons un `mapping' avec les MAE, et analysons la condition de seuil laser déduite de l'équation de transport. Poussés par la volonté de caractériser analytiquement les propriétés statistiques de la matrice de Green, nous développons dans les chapitres 5 et 6 une théorie générale des MAE, hermitiennes et non hermitiennes, valide dans la limite de grande taille matricielle. Nous obtenons des équations couplées pour la résolvante et le corrélateur des vecteur propres d'une MAE arbitraire, puis testons la validité de nos résultats sur trois matrices jouant un rôle important dans l'étude de la propagation des ondes en milieux désordonnés: la matrice de Green dans l'espace tridimensionnel, sa partie imaginaire, et sa partie réelle. D'un point de vue physique, nous sommes capables de décrire analytiquement avec une bonne précision la distribution de probabilité des taux d'émission lumineux dus à un grand nombre d'atomes, ainsi que celle du déplacement lumineux collectif dû à l'interaction lumière-matière. Par ailleurs, nous proposons d'utiliser la distribution des valeurs propres de la matrice de Green non hermitienne comme une carte unique sur laquelle peuvent s'identifier différents régimes de désordre (balistique, diffusif, localisé, milieu effectif, superradiance). Finalement, nous combinons les équations microscopiques de l'interaction lumière-matière avec nos résultats relatifs aux MAE non-hermitiennes afin de caractériser dans le détail le comportement des lasers aléatoires. Le seuil laser ainsi que l'intensité au delà du seuil sont calculés analytiquement dans l'approximation semi-classique, et le spectre de la lumière sous le seuil est évalué en prenant en compte les effets quantiques. Notre théorie s'applique aussi bien à basse densité qu'à haute densité de diffuseurs atomiques.

  • Titre traduit

    Light in disordered atomic systems : Euclidean matrix theory of random lasing


  • Résumé

    This thesis is devoted to the study of the properties of light emitted by a collection of atomic scatterers distributed at random positions in Euclidean space and interacting with the electromagnetic field. In this respect, an ab initio analytic theory of random lasing is formulated in terms of the statistical properties of the so-called `Green's matrix'. The latter belongs to the family of Euclidean random matrices (ERM's), for which we develop an analytic theory giving access to their eigenvalue distribution. First, we derive quantum microscopic equations for the electric field and atomic operators, and show how the non-Hermitian Green's matrix (a matrix with elements equal to the Green's function of the Hemholtz equation between pairs of atoms in the system) emerges in the quantum formalism. We provide expressions for the intensity and the spectrum of light in terms of the properties of the Green's matrix, characterize quantum Langevin forces, and reveal how the semiclassical random laser threshold is washed out by quantum fluctuations (chapters 2 and 3). A mesoscopic and semiclassical description of light scattered by an arbitrary large number of pumped atoms randomly distributed in free space is the subject of chapter 4. After deriving a universal lasing threshold condition valid for any configuration of atoms, we provide a microscopic derivation of transport equation in the presence of gain, discuss various approximations of the latter (Bethe-Salpeter, Boltzmann, diffusion equations), reveal a mapping to ERM's, and analyze the lasing threshold condition inferred from the transport equation. Facing the problem of characterizing analytically the statistical properties of the Green's matrix, we develop in chapters 5 and 6 a theory for Hermitian and non-Hermitian ERM's in the limit of large matrix size. We obtain self-consistent equations for the resolvent and the eigenvector correlator of arbitrary ERM and apply our results to three different ERM's relevant to wave propagation in random media: the three-dimensionnal Green's matrix, its imaginary part and its real part. From a physical point of view, we are able to describe analytically with a fair precision the full probability distribution of decay rates of light emitted by a large number of atoms, as well as of the collective frequency shift induced by the light-matter interaction. In addition, we promote the idea that the eigenvalue distribution of the Green's matrix can serve as a map on which signatures of various regimes of disorder can be distinguished (ballistic, diffusive, localized, effective medium, and superradiance regimes). Finally, we combine microscopic equations of motion of light-matter interaction with our results for non-Hermitian ERM's to tackle the problem of random lasing. Lasing threshold and the intensity of laser emission are calculated analytically in the semiclassical approximation, and the spectrum of light below threshold is computed by taking into account quantum effects. Our theory applies all the way from low to high density of atoms.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?