Ajustement optimal des paramètres de forçage atmosphérique par assimilation de données de température de surface pour des simulations océaniques globales

par Marion Meinvielle

Thèse de doctorat en Sciences de l'univers

Sous la direction de Pierre Brasseur et de Bernard Barnier.

Le président du jury était Chantal Staquet.

Le jury était composé de Pierre Brasseur, Bernard Barnier, Nicolas Ferry.

Les rapporteurs étaient Jérôme Vialard, Michel Rixen.


  • Résumé

    La température de surface de l'océan (SST) est depuis l'avènement des satellites, l'une des variables océaniques la mieux observée. Les modèles réalistes de circulation générale océanique ne la prennent pourtant pas en compte explicitement dans leur fonction de forçage. Dans cette dernière, seules interviennent les variables atmosphériques à proximité de la surface (température, humidité, vitesse du vent, radiations descendantes et précipitations) connues pour être entachées d'incertitudes importantes dès lors qu'on considère l'objectif d'étudier la variabilité à long terme de l'océan et son rôle climatique. La SST est alors classiquement utilisée en assimilation de données pour contraindre l'état du modèle vers une solution en accord avec les observations mais sans corriger la fonction de forçage. Cette approche présente cependant les inconvénients de l'incohérence existant potentiellement entre la solution « forcée » et « assimilée ». On se propose dans cette thèse de développer dans un contexte réaliste une méthode d'assimilation de données de SST observée pour corriger les paramètres de forçage atmosphérique sans correction de l'état océanique. Le jeu de forçage faisant l'objet de ces corrections est composé des variables atmosphériques issues de la réanalyse ERAinterim entre 1989 et 2007. On utilise pour l'estimation de paramètres une méthode séquentielle basée sur le filtre de Kalman, où le vecteur d'état est augmenté des variables de forçage dont la distribution de probabilité a priori est évaluée via des expériences d'ensemble. On évalue ainsi des corrections de forçage mensuelles applicables dans un modèle libre pour la période 1989-2007 en assimilant la SST issue de la base de données de Hurrel (Hurrel, 2008), ainsi qu'une climatologie de salinité de surface (Levitus, 1994). Cette étude démontre la faisabilité d'une telle démarche dans un contexte réaliste, ainsi que l'amélioration de la représentation des flux océan-atmosphère par l'exploitation d'observations de la surface de l'océan.

  • Titre traduit

    Optimal adjustment of atmospheric forcing parameters for long term simulations of the global ocean circulation.


  • Résumé

    Sea surface temperature (SST) is more accurately observed from space than near-surface atmospheric variables and air-sea fluxes. But ocean general circulation models for operational forecasting or simulations of the recent ocean variability use, as surface boundary conditions, bulk formulae which do not directly involve the observed SST. In brief, models do not use explicitly in their forcing one of the best observed ocean surface variable, except when assimilated to correct the model state. This classical approach presents however some inconsistency between the “assimilated” solution of the model and the “forced” one. The objective of this research is to develop in a realistic context a new assimilation scheme based on statistical methods that will use SST satellite observations to constrain (within observation-based air-sea flux uncertainties) the surface forcing function (surface atmospheric input variables) of ocean circulation simulations. The idea is to estimate a set of corrections for the atmospheric input data from ERAinterim reanalysis that cover the period from 1989 to 2007. We use a sequential method based on the SEEK filter, with an ensemble experiment to evaluate parameters uncertainties. The control vector is extended to correct forcing parameters (air temperature, air humidity, downward longwave and shortwave radiations, precipitation, wind velocity). Over experiments of one month duration, we assimilate observed monthly SST products (Hurrel, 2008) and SSS seasonal climatology (Levitus, 1994) data, to obtain monthly parameters corrections that we can use in a free run model This study shows that we can thus produce in a realistic case, on a global scale, and over a large time period, an optimal flux correction set that improves the forcing function of an ocean model using sea surface observations.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.