Thèse soutenue

La rugosité des failles : analyse et conséquences sur l'hétérogénéité des ruptures sismiques

FR  |  
EN
Auteur / Autrice : Thibault Candela
Direction : François RenardMichel Bouchon
Type : Thèse de doctorat
Discipline(s) : Sciences de la terre et de l'univers, et de l'environnement
Date : Soutenance le 23/03/2011
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de géodynamique des chaînes alpines (Grenoble ; 1961-2011) - Institut des Sciences de la Terre
Jury : Président / Présidente : Jean Schmittbuhl
Examinateurs / Examinatrices : Karen Mair
Rapporteurs / Rapporteuses : Yann Klinger, Raúl Madariaga

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Les aspérités géométriques d'un plan de faille contrôlent en partie toutes les étapes de la rupture sismique, depuis sa nucléation jusqu'à l'arrêt du séisme. L'objectif de ce travail est de caractériser la morphologie des surfaces de faille sur la large gamme d'échelles spatiales impliquées dans les tremblements de terre, puis d'explorer son influence sur l'organisation spatiale du glissement et des contraintes. L'approche utilisée inclue des observations de terrain couplées à une étude numérique et théorique. La combinaison de méthodes récentes de mesures topographiques (LiDAR, rugosimètre laser, interféromètre à lumière blanche), qui couvrent des gammes d'échelles spatiales complémentaires, permet de proposer un modèle géométrique cohérent de cinq zones de failles étudiées (Alpes françaises, Apennins, Turquie, Californie, Nevada). La rugosité des surfaces de failles montre des propriétés de dépendance d'échelle, et plus précisément suit un régime auto-affine anisotrope (l'exposant de rugosité est Hpara = 0.6 dans la direction du glissement et Hperp = 0.8 dans la direction perpendiculaire) depuis la centaine de micromètres jusqu'à plusieurs dizaines de mètres. En complément, l'analyse de la rugosité des ruptures de surface de huit tremblements de terre continentaux majeurs montre qu'un unique régime auto-affine anisotropique et sans longueur caractéristique est maintenu jusqu'à l'épaisseur de la croute sismogénique. Cette description de la géométrie des surfaces de failles et des traces de ruptures, est indépendante du contexte géologique. Plus particulièrement, cette étude met en avant que dès lors qu'un glissement cumulé métrique est atteint sur une faille, la complexité géométrique des portions actives des zones de failles est maintenue quel que soit le déplacement supplémentaire accommodé. Finalement, motivé par des observations de terrain, il est proposé que le processus dominant à l'origine de la rugosité des surfaces de failles puisse être l'interaction mécanique et la coalescence de segments multi-échelles. Deux conséquences émergent de cet état de rugosité. Les distributions spatiales du champ de glissement d'une part et du champ des contraintes lors d'un tremblement de terre d'autre part peuvent être expliquées par la présence de deux interfaces rugueuses auto-affines pressées élastiquement et cisaillées. Notamment, en utilisant un modèle numérique de propagation d'une rupture sur une interface hétérogène, la corrélation entre la rugosité 3-D des failles et la distribution spatiale 2-D du glissement dans le plan est clarifiée. Il est proposé que les hétérogénéités spatiales du glissement visibles sur les modèles cinématiques de rupture sismique soient préférentiellement dominées par les complexités géométriques locales plutôt que par la dynamique du front de rupture lui-même. Par ailleurs, les propriétés auto-affines des lèvres de la faille impliquent que les fluctuations spatiales de la chute de contrainte lors d'un séisme augmentent vers les courtes longueurs d'ondes ; ce qui est confirmé par des observations sismologiques. En considérant un modèle de rupture en cascade, il est alors probable que les failles sont fortement inhomogènes, avec des grands tremblements de terre composés d'une somme de petites aspérités multi-échelles qui subissent de fortes chutes de contrainte. Cette étude met en lumière l'importance des hétérogénéités locales en contrainte et en glissement dans la mécanique des tremblements de terre, et propose de les relier à des propriétés morphologiques self-affines de la surface de faille.