Serpentinisation et production d'hydrogène en contexte de dorsale lente : approche expérimentale et numérique

par Clément Marcaillou

Thèse de doctorat en Sciences de la terre et de l'univers, et de l'environnement

Sous la direction de Olivier Vidal et de Manuel Muñoz.

Soutenue le 21-01-2011

à Grenoble , dans le cadre de École doctorale terre, univers, environnement (Grenoble) , en partenariat avec Laboratoire de géodynamique des chaînes alpine (Grenoble) (laboratoire) .

Le président du jury était Nicholas Arndt.

Le jury était composé de François Farges, Bruno Goffé.

Les rapporteurs étaient Jean-Luc Charlou, François Guyot.


  • Résumé

    L'altération hydrothermale d'une péridotite océanique conduit à une profonde transformation minéralogique qui correspond au « processus de serpentinisation ». Durant ce processus, le Fe2+ initialement contenu dans les olivines et/ou les pyroxènes peut s'oxyder en Fe3+ en incorporant des phases nouvellement formées comme la serpentine et la magnétite. L'hydrolyse de l'eau associée à cette réaction entraine la production de grandes quantités d'hydrogène. Au niveau des dorsales océaniques, de fortes concentrations en hydrogène et hydrocarbures ont été récemment mises en évidence sur quelques sites hydrothermaux d'un genre nouveau, tous situés dans un contexte ultrabasique. Dans le but de comprendre les processus contrôlant l'altération hydrothermale des péridotites, et en particulier la production d'hydrogène dans ce type de contexte, nous avons couplé des expériences de serpentinisation in-situ à des simulations thermodynamiques. Les produits de synthèse obtenus dans nos expériences ont été caractérisés à l'aide de différents outils spectroscopiques, principalement par absorption des rayons X en synchrotron. Nous avons ainsi développé plusieurs protocoles expérimentaux permettant d'une part de quantifier les proportions des phases minérales, mais aussi de déterminer la distribution et la spéciation du fer dans nos échantillons altérés. Nos expériences montrent que la cinétique de serpentinisation est fortement dépendante des conditions physico-chimiques (température, rapport eau/roche, état structurel et composition chimique de protolithe) présentes dans le milieu naturel. Parallèlement, ces travaux indiquent que les rôles joués par la serpentine et la magnétite dans la production d'hydrogène évoluent suivant la température mais changent également fortement au cours de la réaction. Ces résultats, affinés par des modélisations numériques, ont été replacés dans un cadre naturel, dans le but de déterminer les différents processus se produisant le long d'un trajet P-T hydrothermal. Il apparait ainsi que l'essentiel de la réaction de serpentinisation s'effectue sur le trajet « prograde » avec une production maximale d'hydrogène située autour de 275°C. Enfin, et grâce aux gradients de température estimés dans ce type de contexte, nous avons pu déterminer la taille et la géométrie probable d'un site hydrothermal comme celui de « Rainbow ».

  • Titre traduit

    Serpentinization and hydrogen production in low spread mid-ocean ridge : experimental and numerical approaches


  • Résumé

    The hydrothermal alteration of a natural peridotite leads to a strong mineralogical change, the so-called “serpentinization process”. During this process, the Fe2+ initially contained in olivines and/or pyroxenes is partially oxidized in Fe3+ incorporated in new mineral phases like serpentine or magnetite. This reaction conducts to the hydrolysis of water and therefore produces high amount of hydrogen. In the mid-ocean ridges, high concentrations of hydrogen and hydrocarbons have recently been measured on a new type of hydrothermal fields, always located on on ultramafic rocks. With the aim to better understand the processes controlling the hydrothermal alteration of peridodites, and in particular the related hydrogen production, numerous in-situ experiments of serpentinization were coupled with thermodynamic calculations. The altered products were characterized using different spectroscopic tools, particularly by X-ray absorption analysis in 3rd generation synchrotrons. Several experimental protocols were thus developed allowing to accurately quantify the phase proportions, the iron distribution, and the iron speciation in the altered samples. Experiments display that the serpentinization kinetic is highly dependent from the physico-chemical conditions (temperature, water-to-rock ratio, structural state and chemical composition of the protolith) inferred in the natural environment. In parallel, our work shows that the roles play by both serpentine and magnetite mineral phases evolve as function of temperature but as well change during the alteration process. These results were coupled with the numerical simulations to be replaced in a natural context determining the different processes encountered along a P-T hydrothermal pathway. As a result, the serpentinization reaction is mainly effective during the “prograde” pathway and the maximum hydrogen production occurs around 275°C. Finally and based on the thermal gradients inferred in such contexts, the size and the geometry of the “Rainbow” hydrothermal field were defined.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.