Electrocinétique tridimensionnelle de particules colloïdales en géométrie microfluidique et application à la manipulation de cellules

par Thibault Honegger

Thèse de doctorat en Sciences et technologie industrielles

Sous la direction de David Peyrade.

Soutenue le 17-11-2011

à Grenoble , dans le cadre de École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble) , en partenariat avec Laboratoire des Technologies et de la Microélectronique (équipe de recherche) .

Le président du jury était Franz Bruckert.

Le jury était composé de David Peyrade, Vincent Studer, Olivier Joubert, Sophie Brasselet, Suzanne Fery-forgues.

Les rapporteurs étaient Vincent Senez, Nelly Henry, Bengt Jonsson.


  • Résumé

    Les propriétés électrocinétiques de cellules ou de complexes colloïde-cellule visant leur manipulation individuelle dans une puce microfluidique devrait permettre de proposer de nouveaux types d'application dans le domaine des laboratoires-sur-puce et de la recherche biomédicale. Les travaux présentés dans ce manuscrit visent à créer une nouvelle technologie de puce microfluidique permettant la manipulation électrocinétique tridimensionnelle sans contact de particules colloïdales. Cette technologie innovante associée à la réalisation de particules colloïdales multifonctionnelles (Janus) permet d'étudier et de contrôler les interactions d'un complexe colloïde-cellule. Une technologie originale de puce microfluidique tridimensionnelle transparente présentant des niveaux d'électrodes biplanaires est développée sans couche résiduelle classiquement présente dans les technologies de scellement microfluidique. Parallèlement, de nouveaux types de colloïdes anisotropes (Janus) et multifonctionnels (fluorescents, fonctionnalisés avec des protéines…) sont fabriqués en associant la synthèse colloïdale aux techniques de la microélectronique et à la fonctionnalisation de surface. La compréhension et l'exploitation des forces électrocinétiques créées par un champ électrique alternatif et non-uniforme sur la solution colloïdale confinée dans cette puce permettent de proposer une nouvelle méthode de détermination du facteur de Clausius-Mossotti. Ce facteur est un paramètre intrinsèque à la solution colloïdale qui régit la force diélectrophorétique. La détermination expérimentale de ce facteur, combinée à une analyse théorique pour les solutions colloïdales étudiées, définit les paramètres du champ électrique à appliquer (fréquence, tension) pour localiser, séparer ou manipuler en trois dimensions des particules micrométriques de tout type (particules nu, fonctionnalisées, disymétriques…). Le mélange de ces particules dans des milieux de culture cellulaire contenant des cellules de lignées humaines crée des complexes colloïde-cellule. En fonction du type cellulaire, ces complexes se caractérisent par une cellule ayant internalisé des colloïdes ou une cellule décoré par des colloïdes attachés sur sa membrane. Soumis à des forces électrocinétiques déterminées, ces complexes démontrent des réponses duales des particules et des cellules contrôlables indépendamment. En combinant l'ingénierie des particules colloïdales et la technologie microfluidique de manipulation électrocinétique sans contact, des forces locales peuvent être exercées sur les cellules par l'intermédiaire des particules.

  • Titre traduit

    3D electrokinetics of colloidal particles in microfluidic channels and application to cell handling


  • Résumé

    The electrokinetics properties of cells or a particles-cell complex for their individual handling in a microfluidic chip open the way to new applications for lab-on-chip or biomedical research fields. The work presented in this thesis aims to create a new technology of microfluidic chips able to perform 3D electrokinetic contactless handling of colloidal particles. Combined with the microfabrication of multifunctional (Janus) colloidal particles this technological breakthrough allows the study and the control of colloidal particles and cells. An innovative technology of a 3D transparent microfluidic chip that integrates two levels of bi-planar electrodes is developed without any residual layer commonly stacked in microfluidic sealing technology. At the same time, a new type of anisotropic particles (Janus) and multifunctional (fluorescence, functionalized with proteins) are microfabricated by combining colloidal synthesis, microelectronics process and surface functionalization techniques. The understanding and the use of electrokinetic forces that are created by a non-uniform electric field in a colloidal solution confined in this chip enable the access to a new method of determination of the Claussius-Mossotti factor. It is an intrinsic parameter of a colloidal solution that rules the dielectrophoretic force. Its experimental determination, combined with a theoretical analysis of the colloidal solution, defines the parameters of the electric field to apply (frequency, applied voltage) in order to localize, separate or handle in 3D all types of micrometer sized particles (plain, functionalized, dissymmetric). The mixing of particles in cell culture mediums that contain human lines cells creates a particle-cell complex. According to the cellular type, those complexes are characterized by a cell that has internalized particles or is decorated by particles attached on its membrane. Submitted to determined electrokinetic forces, those complexes show dual responses that are controllable on both particles or cell independently. By associating the engineering of colloidal particles and this electrokinetic contactless handling microfluidic technology, local forces can be exerted on cells via those particles.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.