History-matching of petroleum reservoir models by the ensemble Kalman filter and parameterization methods

par Leila Heidari

Thèse de doctorat en Géostatistique

Sous la direction de Hans Wackernagel.

Soutenue en 2011

à Paris, ENMP .

  • Titre traduit

    Calage d'historiques de réservoirs pétroliers par le filtre de Kalman d'ensemble et des méthodes de paramétrisation


  • Résumé

    Le calage historique permet l'intégration de données acquises après la production dans la construction de modèles de réservoir. Le filtre de Kalman d'ensemble (EnKF) est une méthode d'assimilation (ou calage historique) séquentielle capable d'intégrer les données mesurées dès qu'ils sont obtenus. Ce travail est basé sur l'application de l' EnKF pour le calage historique et est divisé en deux sections principales. La première section traite l'application de la EnKF à plusieurs cas d'études afin de mieux comprendre les avantages et les inconvénients de la méthode. Ces cas d'étude incluent deux cas d'étude synthétiques (un simple et un plutôt complexe), un modèle de faciès et un modèle de réservoir réel. Dans la plupart des cas, la méthode a réussi à reproduire les données mesurées. Les problèmes rencontrés sont expliqués et des solutions possibles sont proposées. La seconde partie traite deux nouveaux algorithmes proposé en combinant l'EnKF avec deux méthodes de paramétrisation: méthode des points pilotes et méthode de déformation graduelle, permettant la préservation les propriétés statistiques de l'ordre de deux (moyenne et covariance). Les deux algorithmes développés sont appliqués au cas d'étude synthétique simple : la première méthode peut réussir avec un nombre suffisant et un bon positionnement des points pilotes. Pour la déformation graduelle, l'application peut réussir si l'ensemble de fond est assez grand.


  • Pas de résumé disponible.


  • Résumé

    History-matching enables integration of data acquired after the production in the reservoir model building workflow. Ensemble Kalman Filter (EnKF) is a sequential assimilation or history-matching method capable of integrating the measured data as soon as they are obtained. This work is based on the EnKF application for History-matching purposes and is divided into two main sections. First section deals with the application of the EnKF to several case studies in order to better understand the merits and shortcomings of the method. These case studies include two synthetic case studies (a simple one and a rather complex one), a Facies model and a real reservoir model. In most cases the method is successful in reproducing the measured data. The encountered problems are explained and possible solutions are proposed. Second section deals with two newly proposed algorithms combining the EnKF with two parameterization methods: pilot point method and gradual deformation method, which are capable of preserving second order statistical properties (mean and covariance). Both developed algorithms are applied to the simple synthetic case study. For the pilot point method, the application was successful through an adequate number and proper positioning of pilot points. In case of the gradual deformation, the application can be successful provided the background ensemble is large enough. For both cases, some improvement scenarios are proposed and further applications to more complex scenarios are recommended.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (224 p.)
  • Annexes : Bibliographie p. 207-214

Où se trouve cette thèse ?

  • Bibliothèque : Mines ParisTech. Bibliothèque.
  • Disponible pour le PEB
  • Cote : EMP 160.434 CCL TH 1289
  • Bibliothèque : Mines ParisTech. Bibliothèque.
  • Non disponible pour le PEB
  • Cote : EMP 160.435 CCL TH 1289
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.