Attraction d'ondes pour des systèmes à résonance d'ondes contra-propagatives

par Muriel Grenier

Thèse de doctorat en Mathématiques

Sous la direction de Vladimir B. Matveev et de Hans Rudolf Jauslin.

Soutenue le 26-10-2011

à Dijon , dans le cadre de École doctorale Carnot (Dijon) , en partenariat avec Institut de Mathématiques de Bourgogne (Dijon) (laboratoire) .

Le président du jury était Stefan Wabnitz.

Le jury était composé de Karima Khusnutdinova, Christian Klein.

Les rapporteurs étaient Stefan Wabnitz, Antonio Degasperis.


  • Résumé

    L'attraction d'ondes dans des systèmes contra-propagatifs est un phénomène général, établi initialement en Physique dans le contexte de l'attraction de polarisation entre deux ondes contra-propagatives se propageant dans des fibres optiques. Ce phénomène a été observé expérimentalement, et ses propriétés étudiées via des simulations numériques. Les modèles qui s'y rattachent sont des systèmes hyperboliques d'équations aux dérivées partielles, avec des conditions aux bords dépendant du temps sur un intervalle fini. Le mécanisme sous-jacent peut être expliqué par l'existence de tores singuliers dans les équations stationnaires correspondantes. Le but de cette thèse est d'analyser en détail l'exemple le plus simple dans cette famille de modèles. Nous montrons que la plupart des phénomènes de processus d'attraction d'ondes sont en fait existants dans un modèle linéaire avec intéraction résonnante. Nous établissons l'existence et la régularité des solutions et analysons la relaxation vers la solution stationnaire qui caractérise les propriétés de l'attraction d'ondes.

  • Titre traduit

    Wava attraction in resonant counter-propagating wave systems


  • Résumé

    Wave attraction in counter-propagating waves systems is a general phenomenon that was first established in Physics in the context of the attraction of the polarization between two counter-propagating waves in optical fibers. This phenomenon has been observed experimentally, and its properties were studied through numerical simulations. The models are Hamiltonian hyperbolic systems of partial differential equations, with time-dependent boundary conditions on a finite interval. The underlying mechanism can be traced back to the existence of singular tori in the corresponding stationary equations. In this work we analyze in detail the simplest example in this family of models. We show that most of the phenomena of the wave attraction process are already present in a linear model with resonant interaction. We establish the existence and regularity of the solutions and analyze the relaxation towards a stationary solution that features the wave attraction properties.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bourgogne. Service commun de la documentation. Bibliothèque de ressources électroniques en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.