Propagation d’un choc dans un milieu hétérogène

par Déborah Elbaz

Thèse de doctorat en Physique

Sous la direction de Frédéric Dias.

Le président du jury était Jean-Michel Ghidaglia.

Le jury était composé de Georges Jourdan, Benoît Canaud.

Les rapporteurs étaient Abdellah Hadjadj, Dimitri Batani.


  • Résumé

    Dans le cadre de la fusion par confinement inertiel en attaque directe, l'utilisation de mousses en tant qu'ablateur permet de réduire les instabilités hydrodynamiques créées sur la cible par l'irradiation directe des faisceaux laser. Des études antérieures ont été réalisées en considérant cette mousse comme homogène. Or, étant composée de fibres de CH baignant dans du DT, elle présente un aspect hétérogène. Le but de cette thèse est d'étudier l'effet de cette hétérogénéité sur la vitesse du choc lors de l'irradiation laser de la cible. Une étude expérimentale sur tube à choc et des études numériques avec le code HERA nous ont permis de trouver que le choc se propage plus rapidement dans le milieu hétérogène que dans le milieu homogène de densité moyenne équivalente. Cette écart de vitesse dépend du taux de présence des fibres de CH, du rapport de densité entre les deux matériaux constituant la mousse, de leur coefficient adiabatique et de la géométrie de la mousse. Nous avons modélisé la mousse de diverses manières, en partant du plus simple au plus compliqué, afin de se rapprocher d'une configuration réaliste. La modification de la vitesse du choc étant dûe à la baroclinicité qui, lors de l'interaction du choc avec l'interface entre le CH et le DT, crée un dépôt de vorticité, responsable de l'accélération du choc. Par conséquent, une interface plane et perpendiculaire au front de choc maximise ce dépôt de vorticité et augmente les écarts de vitesse entre milieux hétérogènes et homogènes. Une corrélation entre l'énergie cinétique derrière le choc et la différence relative des vitesses de choc a été trouvée. Nous avons comparé nos résultats à deux modèles analytiques, mais le système n'étant pas fermé, nous ne pouvons pas, pour le moment, élaborer de modèle prédictif.

  • Titre traduit

    Shock propagation in a heterogeneous medium


  • Résumé

    In the frame of the inertial confinement fusion in direct drive, the use of CH(DT) foams as ablator allows the reduction of hydrodynamic instabilities created on the target by the direct laser irradiation. In the past, studies have been carried out considering this foam to be a homogeneous medium. Yet, the foam is composed of CH and DT, so it presents heterogeneous features. We study the effects of the heterogeneity on the shock velocity when the laser irradiates the target. Thanks to experimental and numerical studies, we show that the shock propagates faster in the heterogeneous medium than in the homogeneous one with the same averaged density. This velocity gap depends on the presence rate of the CH fibers in the foam, the density ratio, the adiabatic coefficient and the foam geometry. We modelize the foam by different ways, more and more complex. The shock velocity modification is due to the baroclinicity which, during the interaction between the shock front and the interface, creates a vorticity deposition, responsible for the shock accceleration. Accordingly, a interface, which is plane and perpendicular to the front shock, maximises the vorticity deposition and increases the velocity gaps between heterogeneous and homogeneous media. We found a correlation between the kinetic energy behind the shock front and the velocities relative difference. We compared our results with two analytical models. However, the system is not closed, so we can't, for the moment, develop a predictiv model.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : École normale supérieure. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.