Algèbres de Hopf d'arbres et structures pré-Lie

par Abdellatif Saïdi

Thèse de doctorat en Mathématiques

Sous la direction de Dominique Manchon.

Soutenue le 17-12-2011

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire de mathématiques (Clermont-Ferrand) (équipe de recherche) .

Le président du jury était Slaïm Ben Farah.

Le jury était composé de Frédéric Chapoton, Boujemaâ Agrebaoui, Didier Arnal, Mohamed Selmi.

Les rapporteurs étaient Frédéric Chapoton, Boujemaâ Agrebaoui.


  • Résumé

    Nous étudions dans cette thèse l’algèbre de Hopf H associée à l’opérade pré-Lie. L’espace des éléments primitifs du dual gradué est muni d’une structure pré-Lie à gauche notée ⊲ définie par l’insertion d’un arbre dans un autre. Nous retrouvons la relation de dérivation entre le produit pré-Lie ⊲ et le produit pré-Lie de greffe → sur les éléments primitifs du dual gradué de l’algèbre de Hopf de Connes Kreimer HCK. Nous mettons en évidence un coproduit sur le produit tensoriel H ⊗HCK, qui en fait une algèbre de Hopf dont le dual gradué est isomorphe à l’algèbre enveloppante du produit semi-direct des deux algèbres de Lie considérées. Nous montrons que l’espace engendré par les arbres enracinés qui ont au moins une arête, muni du produit d’insertion, est une algèbre pré-Lie (non libre) engendrée par deux éléments. Nous mettons en évidence deux familles de relations. De plus nous montrons un résultat similaire pour l’algèbre pré-Lie associée à l’opérade NAP. Finalement on introduit les opérades à débit constant et on montre que l’opérade pré-Lie s’obtient comme déformation de l’opérade NAP dans ce cadre.

  • Titre traduit

    Hopf algebras of trees and pre-Lie structures


  • Résumé

    We investigate in this thesis the Hopf algebra structure on the vector space H spanned by the rooted forests, associated with the pre-Lie operad. The space of primitive elements of the graded dual of this Hopf algebra is endowed with a left pre-Lie product denoted by ⊲, defined in terms of insertion of a tree inside another. In this thesis we retrieve the “derivation” relation between the pre-Lie structure ⊲ and the left pre-Lie product → on the space of primitive elements of the graded dual H0CK of the Connes-Kreimer Hopf algebra HCK, defined by grafting. We also exhibit a coproduct on the tensor product H⊗HCK, making it a Hopf algebra the graded dual of which is isomorphic to the enveloping algebra of the semidirect product of the two (pre-)Lie algebras considered. We prove that the span of the rooted trees with at least one edge endowed with the pre-Lie product ⊲ is generated by two elements. It is not free : we exhibit two families of relations. Moreover we prove a similar result for the pre-Lie algebra associated with the NAP operad. Finally, we introduce current preserving operads and prove that the pre-Lie operad can be obtained as a deformation of the NAP operad in this framework.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Clermont Université (Clermont-Ferrand).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.