Etude expérimentale à haute pression et à haute température du stockage et de la distribution de l'eau dans le manteau supérieur terrestre

par Anaïs Nathalie Ferot

Thèse de doctorat en Pétrologie

Sous la direction de Pierre Boivin.

Soutenue le 20-05-2011

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire Magmas et Volcans (équipe de recherche) .

Le président du jury était Dan Frost.

Le jury était composé de Jannick Ingrin, Sylvie Demouchy, Nathalie Bolfan-Casanova, Denis Andrault.

Les rapporteurs étaient Jannick Ingrin.


  • Résumé

    Les minéraux nominalement anhydres du manteau terrestre (NAMs) contiennent de l’eau en faible quantité, dissoute sous forme de défauts ponctuels, et qui affecte de manière drastique les propriétés physico-chimiques du manteau supérieur terrestre. Afin de mieux comprendre cet effet, il est nécessaire d’estimer la capacité de stockage de l’eau des phases mantelliques et les mécanismes de solubilité. De nombreuses données expérimentales sur la solubilité de l’eau dans les NAMs tels que l’olivine, le pyroxène et le grenat, sont disponibles dans la littérature. Toutefois, la majorité de ces études ont été réalisées en système simple, et à des températures ou des pressions trop basses pour être représentatives du manteau supérieur terrestre. L’objectif de cette étude était de contraindre les effets combinés de la pression, de la température et de la composition sur la solubilité de l’eau dans l’olivine et le pyroxène dans les conditions du manteau supérieur terrestre. Les expériences ont été réalisées en condition de saturation en eau dans le système MSH enrichi en fer et en fer et aluminium, à 2,5 ; 5 ; 7,5 et 9 GPa, entre 1175 et 1400°C, à l’aide d’une presse multi-enclumes. Les teneurs en eau ont été mesurées par spectroscopie infrarouge en mode polarisé, à partir d’échantillons finement double polis, sur des cristaux orientés de manière aléatoire. Al est incorporé dans l’olivine et le pyroxène selon la réaction de type Tschermak, et diminue avec la pression dans les deux phases. L’ajout d’Al3+ dans le système favorise l’incorporation de H+ dans l’olivine et surtout dans le pyroxène, mais cet effet disparaît à mesure que la pression et la température augmentent. Dans ces conditions, la solubilité de l’eau dans les deux phases est contrôlée par l’activité de l’eau dans le liquide qui se charge de plus en plus en silicates. Le mécanisme majeur de l’incorporation de l’eau dans l’olivine se fait via le remplacement de sites métalliques par 2H+, impliquant que la solubilité de l’eau dans l’olivine est directement proportionnelle à la fugacité de l’eau dans le liquide. Le partage de l’eau entre pyroxène et olivine est toujours inférieur à 1, sauf à basse pression et basse température, quand Al aide à l’incorporation de l’eau dans le pyroxène par rapport à l’olivine. Dans les conditions du manteau convectif profond, l’eau va préférentiellement dans l’olivine. L’effet de la température sur le partage de l’eau entre les deux phases est négligeable. Ces données ont permis de construire un modèle de stockage de l’eau dans l’olivine à toutes pressions et toutes températures, dans le système MFASH. En combinant ce modèle au partage de l’eau entre pyroxène et olivine calculé dans notre étude, et aux données disponibles dans la littérature sur la solubilité de l’eau dans le clinopyroxène et le grenat, nous avons pu modéliser la capacité de stockage de l’eau dans le manteau supérieur terrestre. Ce modèle prédit que la couche de faible vitesse sismique, détectée à 350 km de profondeur par les observations sismiques, peut être expliquée par la fusion partielle de matériel hydraté provenant de la zone de transition et contenant initialement 750 ppm pds H2O.

  • Titre traduit

    High pressure and high temperature experimental study on water storage capacity and distribution in the earth upper mantle


  • Résumé

    Trace amounts of hydrogen dissolved as defects in nominally anhydrous minerals (NAMs) in the mantle are believed to play a key role in physical and chemical processes in the Earth’s upper mantle. Hence the estimation of water storage in mantle phases and solubility mechanisms are important in order to better understand the effect of water. Experimental data on water solubility in NAMs are available for upper mantle minerals such as olivine, pyroxenes and garnet. However, the majority of studies are based on single phases, and at temperatures or pressures that are too low for the Earth’s upper mantle. The aim of this study was to constrain the combined effects of pressure, temperature and composition on water solubility in olivine and pyroxene under upper mantle conditions. The solubility of water in coexisting pyroxene and olivine was investigated by simultaneously synthesising the two phases at high pressure and high temperature in a multi-anvil press. Experiments were performed under water-saturated conditions in the MSH systems with Fe and Al at 2.5, 5, 7.5 and 9 GPa and temperatures between 1175 and 1400°C. Integrated OH absorbances were determined using polarized infrared spectroscopy on doubly-polished thin sections of randomly-oriented crystals. Al is incorporated in pyroxene and olivine via the Tschermak substitution and decreases rapidly as pressure increases in both phases. Addition of Al3+ into the system enhances water solubility notably in pyroxene and also in olivine. However, this effect tends to vanish as pressure and temperature increase. Under these conditions, water solubility in both phases is controlled by water activity in the fluid due to dissolution of silicate component. The main mechanism responsible for water incorporation in olivine is 2H+ substituting for metal sites, which indicates that water solubility in olivine is directly proportional to water fugacity. Water partitioning between pyroxene and olivine is always lower than unity except at low pressure and temperature, in which case Al favours water incorporation into pyroxene rather than into olivine. In the conditions of the deep convective mantle, water preferentially goes into olivine. The effect of temperature on water partitioning between the two phases is negligible. The newly collected data allowed the construction of a water storage capacity model in olivine at all pressures and temperatures in the MFASH system. Combining this model with the newly measured partitioning of water between olivine and pyroxene, as well as previous data on solubility in clinopyroxene and garnet, we are able to build a model of the water saturation curve in the upper mantle. This model predicts that the low velocity layer reported by seismic observations at a depth of 350 km depth can be explained by partial melting triggered by the rise of a hydrated mantle-transition-zone material containing 750 wt ppm H2O.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Clermont Université (Clermont-Ferrand).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.