Développement d’électrodes poreuses pour un bioréacteur pilote

par Yémina Bon Saint Come

Thèse de doctorat en Chimie-physique

Sous la direction de Rolf Hempelmann et de Alexander Kuhn.

Soutenue le 09-12-2011

à Bordeaux 1 , dans le cadre de École doctorale des sciences chimiques (Talence, Gironde) , en partenariat avec Institut des Sciences Moléculaires (Bordeaux) (laboratoire) .

Le président du jury était Marie-Hélène Delville.

Le jury était composé de Gert-Wieland Kohring.

Les rapporteurs étaient Pierre Gros, Pascal Mailley.


  • Résumé

    Dans ce mémoire nous discutons le développement de l’électrode de travail d’un bioréacteur électrochimique, dispositif permettant de synthétiser suivant un procédé dit de « Chimie Verte » des substances chimiques à haute valeur ajoutée. L’électrode de travail étant le siège de la synthèse électrocatalytique en jeu, l’optimisation de sa structure a été étudiée dans le but de maximiser l’aire de sa surface active. L’élaboration d’électrodes macroporeuses hautement organisées et de taille définie par les dimensions du prototype du réacteur pilote, a pu être obtenue en utilisant la méthode de Langmuir-Blodgett pour assembler le cristal colloïdal servant de template. La formation de ce dépôt organisé de colloïdes est suivie de l’électrodéposition du matériau d’électrode puis de la dissolution du template afin de révéler la structure macroporeuse. L’immobilisation de l’intégralité du matériel bio-électrocatalytique à l’intérieur des pores a été investiguée dans le but de prévenir la pollution du milieu contenant le produit final d’électrosynthèse par un des constituants redox et d’augmenter la durée de vie du dispositif. Ainsi, des couches ultra-minces de silice électrogénérée et des matrices de polymère électrodéposé ont été étudiées dans le but de préserver et d’optimiser l’activité enzymatique du système qu’elles encapsulent. Une attention particulière a été portée sur la qualité des dépôts au sein des structures poreuses. La procédure d’immobilisation des protéines rédox dans les matrices de silice et de polymère a été en outre associée à un jeu de construction moléculaire qui a permis par l’instauration de diverses interactions électrostatiques, de retenir toutes les espèces responsables de la catalyse à la surface de l’électrode. Enfin, dans le but d’intensifier les réactions catalytiques responsables de la synthèse à réaliser, des nano-particules d’ormodifiées par une couche monomoléculaire d’un médiateur redox ont été incorporées aux différents matériaux d’immobilisation permettant de ce fait d’augmenter les interfaces d’échanges électrochimiques entre matériau conducteur et biomolécules. L’insertion de ces nano-objectscombinée à la nanostructuration du matériau d’électrode a permis de multiplier par plus de 170 fois l’intensité des réactions enregistrées.


  • Résumé

    The present work deals with the development of the working electrode of an electrochemicalbioreactor. This device enables the green synthesis of high added value chemical compounds. As theelectrochemical synthesis is located at the interface of the working electrode, structural optimizationof this reactor key component is required in order to maximize the available active surface area.Elaboration of highly organized macroporous gold electrodes with a size required by the pilot reactordimensions were obtained with the Langmuir-Blodgett method that was used to assemble a colloidalcrystal as a template. The elaboration of the organized colloidal deposit is first followed by theelectrodeposition of the electrode material, then by the dissolution of the template. The immobilization of the complete bio-electrochemical system inside the electrode pores was investigated in order to prevent pollution of the final product medium by one of the catalytic chaincomponent. This also improves the device life time. Subsequently electrogenerated ultra-thin silicalayers and electrodeposited polymer matrices were studied in order to preserve and optimize the catalytic activity of the redox proteins. In order to enhance the electrocatalytic synthesis, mediatormodified gold nanoparticules were incorporated in the different immobilization matrices. This allowed to increase the area of the electrochemical interface. The combination of the nano-objectincorporation and electrode nano-structuring intensified by a factor of 170 the catalytic process.


  • Résumé

    Die vorliegende Arbeit beschäftigt sich mit der Entwicklung einer Arbeitselektrode für einenelektrochemischen Bioreaktor, der die umweltfreundliche Synthese von wertvollen chemischenKomponenten ermöglicht. Da die elektrochemische Synthese an der Oberfläche der Arbeitselektrodestattfindet, ist es nötig, den strukturellen Aufbau der Schlüsselkomponente des Reaktors zuoptimieren und die aktive Oberfläche der Elektrode zu erhöhen. Mit Hilfe der Langmuir-BlodgettTechnik wurden kolloidale Kristalle erzeugt, die als Template dienten, um hochgeordnetemakroporöse Goldelektroden, deren Dimensionen von dem Pilotreaktor bestimmt wurden,herzustellen. Nach dem Erzeugen von geordneten kolloidalen Filmen wurde der Zwischenraumzwischen den Partikeln mittels elektrochemischer Abscheidung gefüllt und das Templateanschließend chemisch aufgelöst. In der Folge wurde die Immobilisierung des komplettenbioelektrochemischen Systems im Poreninnenraum untersucht, mit dem Ziel eine Verunreinigung desReaktionsmediums durch eine der katalytischen Komponenten zu verhindern. Die Lebensdauer derElektrode kann so zusätzlich erhöht werden. Es wurde untersucht, inwieweit durch elektrogenerierteultra-dünne Silikaschichten oder durch Elektroabscheidung erzeugte Polymerfilme die katalytischeAktivität der Redoxproteine erhalten und weiter optimiert werden kann. Goldnanopartikel, die miteinem Mediator modifiziert wurden, wurden in die jeweilige Immobilisationsschicht integriert, mitdem Ziel die Effizienz der elektrokatalytischen Synthese zu erhöhen. Auf diese Weise konnte dieaktive elektrochemische Oberfläche der Elektrode weiter erhöht werden. Die Kombination aus einernanostrukturierten Elektrode und Nanoobjekten die in die Immobilisationsschicht eingebettetwurden, führte zu einer Signalerhöhung des katalytischen Prozesses um mehr als eineGrössenordnung.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.