Satisfiabilité propositionnelle et raisonnement par contraintes : modèles et algorithmes

par Jean-Marie Lagniez

Thèse de doctorat en Informatique

Sous la direction de Lakhdar Saïs, Gilles Audemard et de Bertrand Mazure.

Soutenue le 06-12-2011

à l'Artois , dans le cadre de ED Sciences pour l'ingénieur (n°72) .

Le président du jury était Eric Grégoire.

Le jury était composé de Lakhdar Saïs, Gilles Audemard, Bertrand Mazure, Eric Grégoire, Arnaud Lallouet, Laurent Simon, Emmanuel Hebrard, Chu Min Li.

Les rapporteurs étaient Arnaud Lallouet, Laurent Simon.


  • Résumé

    La thèse porte sur la résolution des problèmes de satisfiabilité propositionnelle (SAT) et des problèmesde satisfaction de contraintes (CSP). Ces deux modèles déclaratifs sont largement utilisés pour résoudredes problèmes combinatoires de première importance comme la vérification formelle de matérielset de logiciels, la bioinformatique, la cryptographie, la planification et l’ordonnancement de tâches.Plusieurs contributions sont apportées dans cette thèse. Elles vont de la proposition de schémas d’hybridationdes méthodes complètes et incomplètes, répondant ainsi à un challenge ouvert depuis 1998, àla résolution parallèle sur architecture multi-coeurs, en passant par l’amélioration des stratégies de résolution.Cette dernière contribution a été primée à la dernière conférence internationale du domaine (prixdu meilleur papier). Ce travail de thèse a donné lieu à plusieurs outils (open sources) de résolution desproblèmes SAT et CSP, compétitifs au niveau international.

  • Titre traduit

    Propositional satisfiability and constraints satisfaction problems : models and algorithms


  • Résumé

    This thesis deals with propositional satisfiability (SAT) and constraint satisfaction problems(CSP). These two declarative models are widely used for solving several combinatorial problems (e.g.formal verification of hardware and software, bioinformatics, cryptography, planning, scheduling, etc.).The first contribution of this thesis concerns the proposition of hybridization schemes of complete andincomplete methods, giving rise to an original answer to a well-known challenge open since 1998. Secondly,a new and efficient multi-core parallel approach is proposed. In the third contribution, a novelapproach for improving clause learning management database is designed. This contribution allows spatialcomplexity reduction of the resolution-based component of SAT solvers while maintaining relevantconstraints. This contribution was awarded at the last international SAT conference (best paper award).This work has led to several open sources solving tools for both propositional satisfiability and constraintssatisfaction problems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Artois (Arras, Pas-de-Calais). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.