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Chapter 1

Introduction

1.1 Context

We experienced fast data evolution, in which high dimensional data become increas-

ingly common [90]. Although the expansion of storage technologies, networking sys-

tems, and information system methodologies, the capabilities of conventional data

processing techniques remain limited.

The need to knowledge extraction, compact representation and data analysis are

highly motivated by data expansion. Nevertheless, learning from data might be a

complex task, particularly when it includes noisy, redundant and information-less

attributes.

Such challenges, stimulate the development of feature selection research [53, 54,

87, 90], since it is considered as a valuable way to provide compact representations

of a given context and to prepare data for other learning methods. In fact, in the

last decade we witnessed the expansion of the Feature Selection research in multi-

ple disciplines and application fields (data mining, machine learning, combinatorial

optimization, bio-informatics, statistics, fraud and spam detection, bankruptcy pre-

diction, etc).

In this thesis we investigate different optimization paradigms as well as its adap-

tation to the requirements of the feature selection challenges.

3



CHAPTER 1. INTRODUCTION 4

1.2 Problem and Motivations

Feature Selection (FS) tries to select the most relevant attributes from raw data,

and hence guides the construction of final classification models or decision support

systems. Selected features should be representative of the underlying data and provide

effective usefulness to the targeted learning paradigm (i.e. classification technique,

knowledge representation technique).

In addition to the compact representation of data, feature selection allows:

• the selection of useful features: appropriate features for a particular context

• discarding irrelevant attributes: noisy or information-less.

• removing redundancy: attributes that are correlated to the selected ones and

providing the same informational content.

• reducing models complexity: enhancing comprehensibility of the devised models

The selection of a subset of attributes, according to a given criterion, involves the

selection of a search space more larger than the number of attributes, since it should

take into account possible combinations of attributes. The combinatorial nature of the

problem [54, 90] should be tackled by adapted methods reducing search complexity

and keeping an acceptable effectiveness level.

The above challenging problems will be detailed through the review of the ex-

isting approaches as well as the recent advances in the field. Various aspects of the

challenging points will be studied throughout different contributions.

1.3 Contributions

According to H. liu and H. Motoda [90], the expansion of feature selection research

could be characterized in two ways: (i) The first is to develop and adapt existing

approaches to meet the arising challenges (ii) while the second trend targeted the

development of new algorithms tackling the above mentioned challenges. Both aspects

are taken into consideration, throughout this thesis. In fact, contributions cover
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enhancement of existing approaches as well as the investigation of new FS modeling

schema.

1.3.1 Goals

Among goals that will be studied throughout the thesis,

• The enhancement of Genetic Algorithms (GA) search capabilities by endowing

it with a variety of local search operators [34, 58]. The design of the LS operators

should take into consideration the requirement of FS modeling, in addition to

the complexity to the problem at hand.

• Looking for an optimization paradigm which is able to combine the advantages

of both filters and wrappers in a natural way.

• the investigation of the swarm modeling as a framework for the combination

of knowledges provided by different filters as well as the hybridization of filter-

wrapper capabilities.

1.3.2 Empirical validation

The empirical study of the different experimented approaches were done according to

validation protocol which take into consideration the requirement and the specifici-

ties of the FS problem. The validation protocol involves metrics for the assessment of

the results of both stages: search and validation. The search stage requires a proce-

dure for fitness evaluation which reflects the accuracy of the retained feature subset,

while the validation stage assesses the reliability of returned solution regardless of the

search context (i.e. different classifiers, different validation data sets). The validation

protocol used for the assessment of the different approaches will be detailed in Annex

I (see p. 165).

1.4 Thesis outline

Thesis chapters are organized as follows:
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• Chapter II reviews feature selection modeling, details main problem aspects,

and surveys featured, recent and reference approaches.

• Chapter III is devoted to the enhancement of evolutionary algorithms with local

search (LS) capabilities. We focus on global local-search hybridization as well

as the adaptation of the LS operators to the requirement of high dimensional

FS problems.

• Chapter IV investigates the Greedy Randomized Adaptive Search Procedures

(GRASP) [38] metaheuristic as a scheme for FS modeling through the effec-

tive combination wrapper-filter approaches [32]. We extend an existent recent

proposed GRASP to a more accurate approach which is able to handle high

dimensional data sets.

• Chapter V explores the swarm FS modeling abilities. A continuous PSO (Parti-

cle Swarm Optimization [31]) is devised and compared to a reference approach

based on a binary PSO [21]. We study, also, the wrapper filter hybridization

issues as well as the adaptation and the control of swarm parameters and ve-

locities.

Finally, we conclude the thesis by summarizing, main design issues, and potential re-

sults. We provide some perspectives in relation with the investigated search method-

ologies and the new trends and application in the context of feature selection and

classification optimization paradigms.



Chapter 2

Feature Selection Problem:

Rewiew and Recent Advances

2.1 Introduction

The identification of useful and informative attributes for given data set, broadly

referred to as Feature Selection (FS), is an attractive and challenging research topic

for several domains including predictive Data Mining, Pattern recognition, Machine

Learning and information retrieval [54, 96, 100].

Recently, the interest in feature selection has been on the increase for several

reasons including the expansion of dataset dimensions, the need to analyze with the

same efficiency as with small datasets and the development of new and urgent needs of

robust and reliable techniques for fraud detection, multimedia information retrieval,

and predictive modeling for medical data [103].

One of the fundamental motivations for feature selection is the curse of dimen-

sionality [90]. In fact, the presence of useless features may not only deteriorate the

performance of learning algorithms but also obscure information behind data [89].

Considered as a fundamental problem in machine learning [122], the role of FS is

critical, especially, in a context deemed with irrelevant features (i.e. redundant and

noisy features).

In addition to the curse of dimensionality, effective FS has the ability to reduce
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measurement and storage costs, alleviate computational complexity for classification

and data analysis processes, improve classification accuracy, reduce over-fitting in

learning and enhance model comprehensibility [53, 54].

Besides, the multi-disciplinary nature of the FS problem has resulted in a plethora

of approaches and techniques that have attempted to tackle the problem from dif-

ferent purposes consideration and targets and using various methodologies as well as

optimization paradigms [54]. Most of the existing approaches rely on heuristic search,

and thus, cannot provide any guarantee of optimality.

The aim of this chapter is to introduce basic problem materials, provides recent

survey of existing FS approaches and to enumerate challenging issues for FS modeling

and applications. The reminder of the chapter is organized as follows:

Section 2 details different formulations and concepts associated to FS. Section 3

reviews basic apporaches and new advances in FS. Section 4 discusses both challenges

and future research direction in FS modeling. Section 5 concludes the chapter.

2.2 Problem formulation and main concepts

This section starts by reviewing different feature selection problem formulation alter-

natives. Next, we detail, some definitions and basic concepts in relation with feature

selection modeling. After that, an overview of the feature selection process will be

detailed.

2.2.1 Problem formulation

The FS problem was defined as an optimization problem [87, 90] and existing formu-

lations could be grouped into tree families. The common one, which is being widely

used, suggests the selection of the subset that could achieve the highest classification

accuracy (i.e. The ability to represent and predicit a given target value) 1 [54, 90].

The problem is formlulated as follows: Let D be a data set where each instance is

described by n attributes 2 N (‖ N ‖= n), and let X (X ⊆ N) be a subset of N .

1Classification and associated concepts and paradigms will be subsequently detailed
2Attributes and features would be used interchangeably
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Let J(X) be the function capable of assessing the relevance of the subset X . The

problem of feature selection states the selection of a subset Z such that:

J(Z) = maxX⊆NJ(X) (2.1)

The selection of the best subset requires the exploration of 2n solutions, which would

be prohibitive, even, for moderate values of n. The typical structure of the data set

D includes a set of attributes (features) describing the context and a set of classes

representing the target to predict or to represent by a compact set of features. Table

2.1 illustrates such a structure.

f1 f2 . . . fn class
instance 1 val11 val12 . . . val1n c1
instance 2 val21 val22 . . . val2n c2

. . . . . .

. . . . . .

. . . . . .
instance m valm1 valm2 . . . valmn cj

Table 2.1: Typical data set structure

In other words, the retained feature subset should be compact and representative

of the dataset instances or the underlying context. This can be done by both ignoring

redundant and/or irrelevant attributes and keeping the minimal information loss.

Some alternative formulations, tried to alleviate search exploration complexity

by considering a penalty term within the objective function (i.e. multi-objective

formulation [35, 42, 51]). In fact, an additional member of the objective function

computes the number of selected attributes and associated cost. By doing so, search

is focused on subsets of features well performing with a reduced cardinality.

The third formulation targets a subspace of original search space, by limiting

the search space exploration to solutions with a given cardinality (d << n). There-

fore, the search space is reduced to the combinations

(
n

d

)
of d-subsets. Indeed,

all solutions representing larger subset or different cardinalities are discarded. Such
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formulation could be useful for high dimensional datasets. However, we should de-

fine the appropriate d value, because each d provides a new search space different

from the others. Featured apporaches adopting such formulation alternative include

[27, 101, 120, 133, 134].

The common argument in favor of such formulation is that the target of the FS

process, is to find a subset of attributes that can be used to carry out the classification

task in an optimal way.

In addition to the three above formulations, another one, which is rarely used,

consists in searching for compact subsets reaching a given level of accurracy [79].

Throughout this thesis we opt for the first formulation not only because it is

commonly and widely used, but also because we don’t have to cope with the definition

neither the approximation of the appropriate d value, or the weighting coefficients

to scale between the solution quality and subset cardinality. Further studies could

focus and study in depth multi-objective formulation issues or both theoretical and

empirical approximation of the optimal d value during the search.

2.2.2 Concepts and Definitions

In this section, we review some featured definitions and concepts frequently used in

feature selection resolution modeling.

One important question that could be discussed here, is how to categorize features

and to consider them as: relevant, irrelevant, noisy, or/and redundant?

Relevance

To reply to the above question, we need to recall definitions of relevance property as

they were introduced by Kohavi [68, 76].

Definition 1.

Strong Relevance: An attribute fi is strongly relevant if its removal yields a deterio-

ration of the performance criterion (i.e. classification rate)

Definition 2.
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Weak Relevance: An attribute fi is weakly relevant if it is not strongly relevant and

there exists a subset of features X such that the performance on X
⋃
{fi} is better

than the performance on X .

Therefore, features that are neither strongly relevant or weakly relevant are ir-

relevant. The presence of many irrelevant features, particularly in high dimensional

contexts, could lead classifiers to overfit training data: learning from irrelevant fea-

ture made the classifier unable to generalize and predict correct outcome on new

data [27, 53, 54, 135]. Some related concepts add another degree of complexity, es-

pecially when we consider overlapping boundaries between relevant, redundant and

interacting features (see Figure 2.2).

We think that attributes relevance could not be defined in an absolute manner (i.e.

considering only attribute-class dependency level). In fact, the attribute add/removal

impact on performance contribution/deterioration of a given feature might vary not

only, from one feature to another but also from one selected subset to another.

Redundancy

The notion of feature redundancy, is intuitively expressed in terms of correlation [90].

Indeed, two features highly correlated might be seen as redundant. Nevertheless, the

attribute redundancy depends on the metric used for correlation assessment (i.e. lin-

ear, non-liear correlation) and also, on their respective dependency to the context (i.e.

class, target outcome). Several studies consider the correlation and attributes distri-

bution similarity as a sufficient metric for redundancy detection [54], while recent ones

focus on both attributes correlation and attribute-class dependency [27, 35, 54, 90].

This notion was, usually, associated to the concept of Markov Blankets [54].

Definition 3.

Redundant feature [90]:

for a given subset X , a feature is redundant and hence should be removed, if it has

a Markov blanket Mi within X .

Definition 4.
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Markov blanket : given a feature fi ∈ F , let Mi ⊂ F , such that fi /∈ Mi, Mi is said to

be a markov blanket for fi iif

P (F \Mi \ {fi}, (C|fi,Mi)) = P (F \Mi \ {fi}, C|Mi) (2.2)

where P (.) denotes a probalility distribution. In other words, a Markov blanket of a

given variable fi /∈ X is defined as the minimal union of all variables Mi that makes

X independent from Mi [77].

Several works have attempted to tackle the FS problem with two stages search.

Indeed, rather than selecting representative features, they try to, first, identify rele-

vant ones, then the redundent attributes are discarded. This two stages scheme, is

illustrated by Figure 2.1. Featured approaches, which have adopted such a scheme

include [15, 35, 88, 106, 130, 135].

Since Markov Blanket process requires exponential time for a full dependency

network exploration, a set of alternatives attempted to overcome this limitation [90,

131].

Figure 2.1: Relevance-redundancy serach process [131]

A Blanket Markov approximation was proposed in [77], then reformulated in [130].

The approximation is based on information theory measures. Torkkola reports in [54],

that the returned subset is not optimal and might contain unnecessary variables. He

also, suggested that redundancy must be dealt by other methods. Nevertheless, the

yielding dimensionality reduction was interesting in a context of large number of

irrelevant variables (i.e. biomarker identification [130, 139]). A figure which could,

in a part, summarizes the different concepts previously introduced was proposed in

[131] and [90] (see Figure 2.2). the feature set includes irrelevant (I), strongly relevant
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(IV), and weakly relevant. The optimal feature subset according to [131] must cover

strongly relevant features. However, these features might be redundant and optimal

subset obtained after an exhaustive search space exploration might include feature

not strongly relevant but performing better when they interact with the selected

attributes.

Figure 2.2: Feature categorization [90]

Attributes interaction

Since feature selection is considered as one of the effective means to remove irrelevant

features, particularly, those for which the removal did not deteriorate the performance,

feature removal is a very challenging task. In fact, attributes individually irrelevant

(i.e. according to a given attribute), might become useful when combined with other

features [54, 135]. In addition to the risk of useful information loss, the selection of

the suitable features, which are not necessarily relevant to the problem context, but

contribute, with some of the selected attributes, to enhance performance accuracy

(i.e. classification rate), would generate another combinatorial problem. In [66],

Jakulin and Bratko investigated the interactions among subsets of retained features.

Indeed, a feature might loose its relevance due to the absence of interacting feature

[67]. Some heuristics and criteria localizing dependency and assessing interaction

levels among subsets of features, were devised. These works include the interaction

gain [66] measure, and the Interact algorithm [135] which will be detailed in the next
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section.

Researchers often resort to various approximation to find relevant features [135].

It has been shown that estimating the relevance of individual features may not be

difficult. However, the real challenge is to estimate the relevance of a subset of features

[104]. The following section details various approaches accessing individual feature

relevance as well as attribute subsets search strategies.

2.2.3 Feature selection process

Figure 2.3 illustrates the generic process that could summarizes the different steps

by any feature selection apporach. As input the feature selection process requires

the dataset for which the relevant features will be identified. The outcome should

include the retained features as well as their performance level. Generally, such

process consists of two stages: search and validation. Regardless of the nature of the

feature selection approach, it should provide a search mechanism (heuristic) and an

evaluation procedure. In other words, within the first stage the subset generation

produces candidate feature subsets based on a certain search strategy. Next, each

candidate subset is evaluted according to certain criterion and compared to the best

solution found. generation and evaluation is repeated until a given stopping criterion

is satisfied. The best subset resulting from the first stage is provided as input for

the second stage where it is usually, validated on a different data set and event on

a different evaluation criterion. Generally, the validation stage involves the use of

a classifier to assess the performance of the selected features. The second stage is

usually separated from the search process, to reduce the risk of a non biased selection

procedure, nevertheless some approaches limit its process to the first stage [54]. It is

clear that the evaluation procedure is different from the validation stage because the

second stage asseses the robustness and the stability of the search stage. Besides, it

is not recommanded to consider validation metrics as criteria to optimize within the

first stage (i.e. assessment procedure) [54].

A validation protocol (see Annex I p. 165) derivated from the feature selection

process, was developed and adopted for the empirical assessment and comparison of
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Figure 2.3: Feature selection Process [131]

the devised approaches as well as reference ones.

2.3 Feature selection modeling: state of the art

There are various ways in which the FS methods could be categorized. Aiming at the

coverage of the recent advances in FS modeling, we extend the classical wrapper-filter

classification, by devising a classification relying on five groups of methods: filters,

wrapper, embdded, hybrid, and distributed alternatives.

2.3.1 Filters

Considered as the earliest approach to feature selection, filter methods discard irrele-

vant features, without any reference to a data mining technique for subsets evaluation.

It applies a search based on intrinsic attribute properties and mainly its relation with

the data set class [54]. Several measures were proposed to assess attribute relevance
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and redundancy (i.e. distance measures, correlation, information theory, consistency,

causality, etc). Filter approaches apply the evaluation criterion to each attribute and

a score is assigned to each of them. Typically filters sort attribute scores and, usually,

return top-K attributes with best scores. Filters are also known as scoring methods.

The main advantage of the filter methods is its reduced computational complexity

which is due to the independent criterion used for feature evaluation (often, evaluation

complexity is in the range of O(N ∗ M) 3 and O(M2)) and, the relatively simple

heuristic search which is comparable to a sort algorithm complexity ranges between

O(NlogN) and O(N2). In most of the cases, filters rank attributes according to

a predefined criterion. Nevertheless, considering one feature at a time cripple the

filter to handle with either redundant or interacting features. Such limitations have

paved the way to the multivariate approaches (i.e. wrappers, embedded alternatives

[54], multivariate filters etc) which take into consideration subsets of features in both

search and evaluation.

Distance measure filters

Filters based on distance measure use the class separability as discrimination criterion.

In fact, greater difference between the two class conditional probabilities, for a given

distribution, is preferable to distinguish an attribute from another. Difference between

attribute distributions could be evaluated by χ2 statistics [92]. Similarly, distribution

difference could be assessed by Kolmogorov probabilities measure [54].

As a reference approach, the Relief remains one of the more representative algo-

rithm, based on distance measure, used for effective feature selection. Relief adopts

an iterative search procedure based on neighborhood and assesses features according

to their discriminative power. A weight W [i] is assigned to each feature. The weights

should reflect the respective features ability to distinguish between the classes by com-

paring attribute values for similar instances belonging to different classes. In fact, the

iterative process (see Algo. 1 Lines 3-8) involves the selection of a random instance

xk. The nearest instances from each class are selected as neighborhood (same class:

3M: number of dataset instances; N: number of attributes
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nearest hit xH and opposite class: nearest miss xM). The weights are updated ac-

cording to the merit of each feature in the differentiation of the appropriate instance

against neighborhood ones (see Algo. 1 Line 8 and eq. 2.3).

diff(i, xj, xk) =





|xj,i − xk,i|

max(fi)−min(fi)
, attribute fi is numerical

0, xj,i = xk,i, fi is nominal

1, xj,i �= xk,i, fi is nominal

(2.3)

Features are ranked according to final weights, and negative ones could be consid-

ered as irrelevant. The more the score is high, the more the attribute is relevant. The

threshold of zero can be used as a cut-off to return the proportion of relevant features.

This method is not well sweeten for datasets with redundant or highly correlated fea-

tures [76]. Relief was initially designed for binary classification problems (data sets

with two classes). Some extensions have aimed to provide generalized alternative and

overcome basic Relief limitations. ReliefF [78], is able to deal with both missing

values and noisy data. Besides, weights (W [i]) update relies on a new generalized

version of the diff(.) function and it is able to handle multi-class problems in an

effective manner.

An extension of the ReliefF was proposed to cope with regression problems in

[112]. Another formulation of the basic Relief which takes into consideration context

sensitivity was proposed by Hong in [59]. A detailed review of Relief algorithms

family as well as empirical studies could be found in [113] and [90].

Relevance and Correlation measures

Correlation or dependence measures evaluate the ability to predict the value of one

variable from the value of another variable [24]. Feature relevance could be measured

in terms of level of the correlation between the class and a given feature.

A popular correlation coefficient in statistics, is the Pearson’s coefficient (see eq.
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Algorithm 1: Basic Relief

Input:
F : Initial Feature set
C: Target class Attribute
m: sampling parameter (max. iterations)
Output: W : features weights

1 begin
2 ∀ W [i] ∈ W, W [i] ← 0
3 for (l = 1 to m) do
4 xk ← getRandomInstance()
5 for (y = 1 to |C|) do
6 xH ← getNearestHit(xk); xM ← getNearestMiss(xk);
7 for (i = 1 to |F |) do

8 W [i] ← W [i]−
diff(i, xk, xH)

m
+

diff(i, xk, xM)

m

9 Return (W )

2.4):

̺(x, y) =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
∑

i(yi − y)2
(2.4)

where xi and yi respectively denote x and y values, x and y for average features values.

Features might be either positively or negatively dependent. But, for coefficient

around zero features are considered uncorrelated. Such a measure is usualy used with

continuous features, and its generally considered as a linear dependence measure.

A Non-linear correlation measure was also proposed. They were in most of the

cases based on information theory measure as mutual information and symmetri-

cal uncertainty [57]. Symmetrical uncertainty 4 was usually used with categori-

cal variables [96] and considered more reliable than mutual information measure

[56, 57, 90, 96] and low biased for multivalued features. Detailed survey on cor-

relation, statistical or information based relevance scoring methods could be found,

in [29].

In [96], authors discussed issues in relation with significance of relevance based

4Usage, formulation and applications will be discussed on the two following paragraphs
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correlation criteria in practice and argued that in statistics literature the strength

(respectively weakness) of correlation could be due purely to chance. In other words,

the attribute-class correlation coefficient could be interpreted in different ways.

In most of the cases, the design of filter techniques only considers, feature-class

relation to assess attribute relevance or features rank, but ignores the inter-features

relations. Feature independence assumptions could not be validated in practice. To

overcome this problem, the same relevance criterion could be used to evaluate corre-

lation between features to identify redundent ones.

Consistency as relevance criterion

Consistency criterion assesses how well the instances could be distinguished and not

in contradiction according to a subset of feature values. The result for an instance

with a given features subset is either consistent or inconsistent.

Example: Let us illustrate it by a simple example. The two following in-

stances belong to the same dataset and the last value represents the class label.

X1 : (1, 2, 1, C2) and X2 : (1, 2, 1, C1). X1 and X2 uses three identical feature val-

ues but they do not belong to the same class. Consequently this two instances are

considered inconsistent.

The score associated to a given subset S by such a measure is the rate of incon-

sistency ICrate(S) among the whole dataset instances. The Subset S is said to be

consistent, if the rate is below a given threshold α (iff ICrate(S) ≤ α). The current

measure differs from the other selection criteria by the following properties [24]. Con-

trarily to almost FS evaluation measures, this one is monotone. Consequently, the

consistency rate might decrease (and never increase) by the addition of new feature

to a given subset. This property, reduces considerably the FS problem search space.

Besides, the complexity of subset evaluation is in the order of Θ(N) [24]. The level

of noise could be assessed by the inconsistency rate. We should also note that such a

measure could be only used in discrete or binary context. Furthermore, consistency

criterion heavily relies on the data provided as input training data. The structure

of a new set of instances (i.e. test and validation Datasets) belonging to the same
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context might generate a new inconsistency forms that were not detected with feature

selection process. A set of algorithms were developed to explore search space with

this criterion (i.e. Focus [9], ABB [91], SetCover [23]).

Focus [9] is one of the earliest algorithms, that was initially designed for binary

features. It looks for the minimal set of features able to predict pure classes. Fo-

cusM [24] extends original Focus to discrete contexts. Both Focus and FocusM apply

exhaustive search and guarantee optimal solutions (according to the consistency crite-

rion used). The search strategy starts with an empty set of features and incrementally

enumerates all subsets of a given size until stopping condition is met. In [24], FocusM

algorithm was considered as only efficient with a small number of relevant features.

ABB algorithm was proposed as an application of the Branch and Bound technique

to the FS problem [91]. In contrast to Focus, it starts with a full set of features, and

removes one feature at a time. The early pruning of inconsistent subsets, makes the

ABB more efficient with large number of relevant subset sizes.

A detailed survey of consistency based approaches could be found in [24, 83].

Information theory measures

Information theory provides a plethora of measures that characterize the variable

relations. Typically, an information measure quantifies the information gain from a

feature. A feature is preferred to another one if the information gain is greater. In

this section, we overview basic concepts, next we present effective measures that are

being used in FS.

Starting from the begining, Shanon introduced the concept of entropy as a measure

that quantifies the amount of information in a transmitted message or the amount of

information missing before message reception. H(X) assesses uncertainty among X .

The definition is expressed in terms of discrete probabilities p(.) (see eq. 2.5).

H(X) = −
∑

xi∈X

p(xi) log p(xi). (2.5)

The dependency level of two random variables could be measured by Mutual infor-

mation (MI). MI could be expressed in terms of variable entropy (see eq. 2.6), where
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H(X|Y ) is the conditional entropy which represents the uncertainty in X after know-

ing Y. Indeed, the amount by which the entropy of X decreases reflects addition

information about X provided by Y [131]. The Information Gain criterion used by

Quinlan, in decison trees construction [110], is equivalent to the concept of MI (see

eq. 2.6). Information Gain measure is used in FS by assigning, to each attribute, a

score evaluating the attribute-class relation.

I(X ; Y ) = H(X)−H(X|Y ). (2.6)

MI could be formulated as well for discrete contexts as for continuous ones. Mutual

information for discrete attributes (eq. 2.7):

I(X ; Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.7)

MI for continuous attributes (eq. 2.8):

I(X ; Y ) =

∫

Y

∫

X

p(x, y) log
p(x, y)

p(x)p(y)
. (2.8)

where p(x, y) denotes join probability (density function for continuous variables and

mass function with discrete variables) [35]. In comparison with existing dependency

measures, MI has the capacity of measuring any kind of relationship between vari-

ables. Another advantage, is its invariance under space transformation [35]. In-

formation Gain Ratio (see eq. 2.9), also used as a criterion for attribute relevance

evaluation. It is a variant of information Gain metric which is considered less biased

for attribute assessment [13] and decision tree construction [110].

GainRatio(X ; Y ) =
H(X)−H(X|Y )

H(X)
. (2.9)

Gain Ratio normalizes the MI gain by dividing it by the entropy of X . Another well

known measure normalizes the MI gain by using both entropies in the denominator:

Symmetrical Uncertainty SU. As a result the SU coefficient is in the range of [0..1].
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SU(X ; Y ) = 2
H(X)−H(X|Y )

H(X) + H(Y )
. (2.10)

The measure is widely used and considered as a robust measure for attribute ranking

[54, 57, 96, 130, 131]. Besides, SU criterion was used by Huan Liu for the Blanket

Markov approximation and redundancy removal [130, 131].

Multivariate filters

Almost all criteria, described above, assume the independence of the features with

the respect of the class, simply because they evaluate the quality of the feature in-

dependently of the context of the other features that could be selected. The major

problem is feature redundancy. Two features could be highly relevant, and useful for

the class but, also, highly correlated, redundant for the retained subset of features

or/and share the same informational content. On the other hand, features indi-

vidually irrelevant could behave differently, and contribute to improve considerably

classification accuracy, when they are together. Such features would not have a great

chance to be selected with one of the above criteria, simply, because only individual

intrinsic attribute properties are considered. Multivariate filters, tries to overcome

this limitation by endowing FS process with an additional evaluation criterion. In

other words, multivariate approaches compete with wrappers (see section 2.3.2) by

enhancing their abilities in subset selection and evaluation.

CFSs =
|S|rcf√

|S|+ |S|(|S|− 1)rs

. (2.11)

Mark Hall [57] was among the first who introduced multivariate filters. In fact, he

formulated a selection assessment criterion implementing a trade-off between redun-

dancy and relevance. Consequently, the CFS criterion has the ability to evaluate

subsets of features as in the wrapper approaches. In the numerator of the equation

2.11 computes the mean correlation between individual selected feature and the class

(rcf). It gives an estimation of the relevance of the selected attributes, whereas the
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denominator returns an expression based on mean features pairs correlation5. The SU

measure was used to assess feature dependency and relevance [57]. The fact that the

criterion is based on average correlation could penalize features that are individually

low correlated with class and relevant together (i.e. interacting features).

Recently, similar filter measures that aimed at subset evaluation were proposed.

For example, Ooi et al. [104] introduced the concept of differential vaporization which

is illustrated by equation 2.12:

DPs = (rcf)
α.(Us)

1−α (2.12)

The first member measures the average of feature-class pairs correlations, while the

second corresponds to the anti-redundancy measure (see eq. 2.13).

Us =
1

|S|2

∑

i,j∈S,i �=j

1− |ri,j| (2.13)

Battiti in [15], tried to select k relevant features from an initial set of N features

and proposed a greedy search (see Algo. 2). MIFS algorithm starts with an empty

set, and selects the best attributes according to the MI criterion. Next, attributes are

selected with two criteria:

• relevance: MIi

• redundancy:
∑

fs∈S MIi,s

The attribute f ∗
i that maximizes (MIi − β

∑
fs∈S MIi,s) is added to S. In fact, the

selection process reflects a relative trade-off between relevance and redundancy. The

user defined parameter β, regulates the impact of redundancy on the selection criteria.

MIFS-U applies the same incremental selection procedure using an enhanced selection

criterion (see eq. 2.14). In other words, the same process is applied with a different

selection rule (9th instruction).

∀fi ∈ F : maximize[I(fi;C)− β
∑

fs∈S

I(fs;C)

H(fs)
I(fs; fi)] (2.14)

5all subset pairs are considered. Besides |S| refers to the number of selected attributes
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Algorithm 2: MIFS: Mutual Information based Feature Selection

Input:
F : Initial Feature set
C:target class Attribute
β: regulation parameter
K : number of attribute to select
Output:
S : Selected Features

1 begin
2 S=∅
3 ∀ fi ∈ F , MIi ←− I(C; fi) /* Computing mutual information */
4 i∗ ←− argmaxi(MIi)
5 S ←− S ∪ {f ∗

i }
6 F ←− F \ {f ∗

i }
7 while (|S| < K) do
8 ∀ fs ∈ S, ∀ fi ∈ F , MIi,s ←− I(fi, fs)
9 i∗ ←− argmaxi(MIi − β

∑
fs∈S MIi,s)

10 S ←− S ∪ {fi∗}
11 F ←− F \ {fi∗}

12 Return (S )
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According to the [35] MIFS-U criterion makes a better estimation of MI between

input attributes and the class, than MIFS. The Famous Max-Relevance and Min-

Redundancy algorithm (MRMR) [27, 106] suggests a penalization expression based

on proportionality between redundancy rate and the subset size (see eq. 2.15).

∀fi ∈ F : maximize[I(fi;C)−
1

|S|

∑

fs∈S

I(fs; fi)] (2.15)

NMIFS [35] proposed another variant of the MIFS criterion by normalizing the

penalization term (see eq. 2.16).

∀fi ∈ F : maximize[I(fi;C)−
1

|S|

∑

fs∈S

I(fs; fi)

min(H(fi), H(fs))
] (2.16)

Readers could find in [35], a recent and detailed review of FS methods based on

information theory criteria.

Huan Liu proposed a similar approach FCBF [130] which is based on the S.U.

criterion which is used as well as relevance measure as criterion for removing redun-

dancy. The algorithm includes two stages (see Algo. 3). The first selects the best

correlated features to the class. Such features are considered as predominant.

Within the second stage, redundant features are discarded according to the follow-

ing condition (SU(fp, fq) ≥ SU(fq, C)). Indeed, a feature is considered as redundant

when it is more dependent to the current predominant feature than the class. Al-

though, the relative low complexity and the multivariate nature of the approach,

the algorithm could be seen as a hill climbing that discards redundancy through the

search. Consequently, FCBF could be trapped in a local minima.

The same author devised another multivariate filter in [135]. The approach was

maned Interact algorithm. It looks for interacting features among features sorted

using SU criterion. It could be considered as a backward elimination strategy since

it removes features that have low interaction potential with retained features.

Alternative multivariate approaches for selecting relevant and not redundant at-

tributed could be found in [35, 82, 88].
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Algorithm 3: FCBF: A Fast Correlation-Based Filter algorithm [130]

Input:
F : Initial Feature set
C: Target class Attribute
β: Threshold
Output:
S : Selected Features

1 begin
2 S ← ∅
3 foreach (fi ∈ F ) do
4 Calculate SU(fi, C)
5 if (SU(fi, C) ≥ β) then
6 Slist.append(fi)

7 Sort(Slist, DESCorder)
8 int p ← 0, q ← 0
9 while (p < |Slist|) do

10 q ← p+ 1
11 fp ← Slist.getElementAt(p)
12 while (q < |Slist|) do
13 fq ← Slist.getElementAt(q)
14 if (SU(fp, fq) ≥ SU(fq, C)) then
15 Slist.removeElementAt(q)

16 else
17 q + +

18 p+ +

19 S ← Slist

20 Return (S )
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2.3.2 Wrapper methods

When feature selection process is based on a wrapper, attributes are not evaluated

individually, but together and the search is not limited to feature scores sorting, and

the selection of top-k attributes. The resulting search space covers the 2n−1 possible

combinations of features subsets for a data set of n attributes. The exploration of

the feature space is driven by both classification accuracy returned by the selected

subset of features and the involved search technique. Typically, a classifier is used

as a part of the evaluation process by awarding the retained subsets according to

its predictive performance. The wrapper methods often provide better results than

filter ones because they are tuned to the specific interaction between an induction

algorithm (classifier) and its training data [54, 90]. The computational cost of wrapper

is induced by the feature subset evaluation stage. It involves building and evaluation

of a classification model for each attributes subset [56, 132]. Figure 2.4 illustrates

evaluation process and shows how the classifier is involved in solution assessment.

The process starts by the generation of a dataset represnting only selected features.

Next, the classifier builds a model trying to predict, for each data set instance, the

class from features values. The model is built on a training data. Once the learning

process terminates, the evaluation procedures starts with a new data set (test data).

Figure 2.4: Classifiers and attribute subset evaluation



2.3 Feature selection modeling: state of the art 28

The error rate corresponds to proportion of instances correctly classified (pre-

dicted value equal to class value). The feature selection problem could be formulated

as a maximization problem when we consider classification rate and as a minimiza-

tion problem with error rate. The relation between classification and error rate is

formulated by the following equation 2.17:

Classifrate = 1− Errorrate (2.17)

Kohavi et al. [68] were the first to advocate the wrapper as a general framework

for feature selection in machine learning. Numerous studies have adopted the above

methodology by either changing the classifier or the search technique (i.e. greedy,

randomized, stochastic methods etc). Nevertheless with wrappers the risk of over-

fitting 6 in classification 7 is higher than with filter approaches.

Feature selection methods based on wrappers are more computationally expensive

than filters. It is due to the cost of iterative running of the classification algorithm

for solutions evaluation and the number of solutions to examine within the search

space [90]. For a data set of N attributes, the resulting search space is made of

2N − 1 subsets. Aiming to reduce the number of evaluations and to enhance search

reliability some heuristic strategies (i.e. Tabu search, Genetic algorithms, Simulated

annealing, etc) have been investigated to address the problem of finding the best

subsets of features [53, 54, 90]. The following sections review and categorize the

wrapper plethora techniques.

Sequential wrappers

In this section, we review basic sequential wrappers, combined alternatives, and re-

cent advances for greedy methods. Sequential Forward Selection (SFS) and Sequential

Backward Elimination (SBE) are two well known basic sequential approaches recog-

nized as ”bottom up” and ”top down” methods. SFS starts, as shown in Algorithm

4, with an empty set S, and the most relevant feature (from the non-selected ones)

6Learning from noise
7Supervised learning algorithms
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is added to S. The iterative process adds the attributes which maximizes the clas-

sification accuracy, until the desired number of attributes is reached or classification

performances could not be improved. The SBE uses the same sequential process (see

Algo. 5) but it starts with full feature set, and the less relevant feature (according to

the currently selected subset) is removed at each iteration.

We should note that for the sake of simplicity we opt for the below equivalence no-

tation (see eq. 2.18) to facilitate the readability of solution comparison. Here, fitness

denotes the classification performance of the classifier used in solutions assessment.

SA ≻ SB ⇔





SA.f itness ≥ SB.f itness, (lower error rate)

∨ (or)

‖SA‖ < ‖SB‖, if(SA.f itness = SB.f itness)

(2.18)

It is clear that the search is not exhaustive (i.e greedy methods), and the number

of explored solutions is in the order of Θ(N2). Both SFS and SBE apply the hill

climbing procedure. In fact, the solutions explored at a given iteration represent the

neighborhood of the current solution. The iterative neighborhood exploration and

the stopping criterion made SFS and SBE, two local search procedures that could be

easily trapped in local minima. With typical subset evaluator, SFS is faster than SBE

because it evaluates smaller sets than SBE [54]. Indeed, once a feature is selected

with SFS (resp. removed with SBE) it could not be removed (resp. added for SBE)

during the search. The search is, hence, biased. The problem is well known in FS as

the ”nesting effect” [54, 120]. Multivariate filters, also, suffer from the nesting effect.

Attempts to alleviate the nesting effect let to the so called ”Plus-l-Minus-r” method

[79]. Here, rather that adding or removing one feature at a time, in each iteration

l features are added then r features discarded (l � r for the forward procedure).

By doing so, all attributes could be added or/and removed during the search. This

method requires the definition of two additional parameters l and r. In comparison

with basic sequential approaches, ”Plus-l-Minus-r” method requires an additional

computational effort. Some studies considered the search in the opposite direction to
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overcome of the problem of nesting effect as form of backtracking [54].

Algorithm 4: S.F.S. : Sequential Forward Search

Input:
F : Initial Feature set
C: Target class Attribute
Cla: a classifier for solution evaluation
Output:
Sbest : Final Feature set

1 begin
2 S ← ∅ , Sbest ← S
3 Stop ← false
4 repeat
5 Sollist ← {X, ∀fi ∈ F, fi /∈ S,X = S

⋃
{fi}}

6 foreach (X ∈ Sollist) do
7 Evaluate(X,Cla)

8 S ← getBest(Sollist)
9 if (S ≻ Sbest) then

10 Sbest ← S

11 else
12 Stop ← true

13 until (Stop = true);
14 Return (Sbest)

Pudil et al. [109], proposed one of the most effective sequential search methods

for the FS problem [65]: the sequential forward floating Search SFFS and SBFS for

the backword search.

In fact, the floating search combines forward and backward search without the

need to specify any parameter. The forward floating search, starts with empty set

and applies the selection procedure of the sequential forward search. Between two

sequential forward iterations, a sequential backward iteration is conditionally applied.

The backward procedure is taken into consideration only if it contributes to improve

the current solution. The trade-off between the forward/backward iterations is set

dynamically during the search. Algorithm 6 illustrates forward floating search (SFFS)

approach as well as the conditional application of the backward search.
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Algorithm 5: S.B.E. : Sequential Backward Elimination

Input:
F : Initial Feature set
C: Target class Attribute
Cla: a classifier for solution evaluation
Output:
Sbest : Final Feature set

1 begin
2 S ← F , Sbest ← S
3 Stop ← false
4 repeat
5 Sollist ← {X, ∀fi ∈ S,X = S \ {fi}}
6 foreach (X ∈ Sollist) do
7 Evaluate(X,Cla)

8 S ← getBest(Sollist)
9 if (S ≻ Sbest) then

10 Sbest ← S

11 else
12 Stop ← true

13 until (Stop = true);
14 Return (Sbest)
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Recently, a new improvement of the basic SFFS, was proposed in [101]. The

improved forward floating selection search (IFFS) not only backtracks but also tries

to replace weak feature in the current set. Once the forward step terminates, we firstly,

attempt to improve solution with a backward stage. If the backward procedure fails,

the second improvement attempt replaces the weak feature with one of the remaining

features. In the case where the replacement enhances the solution, the backward

procedure is applied again to the new solution, otherwise we restart the cycle with

the forward procedure. In comparison to the basic floating search, this variant tries

to overcome nesting effect and to escape the local minima by diversifying the search

around the current solution with different neighborhood structures (i.e. forward

backward procedures, features replacement, add/remove of more than one feature).

The local minima risk is reduced, but not completely discarded.

Several enhancements of the basic sequential search were also proposed in [52].

Wrappers based on heuristics

In this section, we explore, in depth, another active research field of the FS mod-

eling, namely the combinatorial optimization nature of the problem. Surveyed ap-

proaches fall into three classes: local search based methods, evolutionary and swarm

approaches.

Heuristics based on Local search

The above presented sequential approaches approaches could, be also, considered as

local search procedures. Nevertheless, the approaches presented here belong to the

stochastic optimization wheareas the above presented ones were deterministic.

A common and important aspect that is shared with the previous apporaches is the

notion of neighborhood. In fact, the search starts by defining a set of solutions around

the current one: neighborhood. Then, the search evolves iteratively, by selecting the

best solution in the neighborhood.

Simulated Annealing (SA): SA is a stochastic approach which is based on sta-

tistical thermodynamics for finding near optimal equilibrium. SA simulates the energy
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Algorithm 6: S.F.F.S.: Sequential Forward Floating Search

Input:
F : Initial Feature set
C: Target class Attribute
Cla: a classifier for solution evaluation
Output:
Sbest: Final Feature set

1 begin
2 S1 ← ∅ , Sbest ← S1
3 Stop ← false
4 repeat
5 Sollist ← {X, ∀fi ∈ F, fi /∈ S1, X = S

⋃
{fi}}

6 ∀X ∈ Sollist, Evaluate(X,Cla)
7 S1 ← getBest(Sollist)
8 Sollist ← {X, ∀fi ∈ S1, X = S \ {fi}}
9 ∀X ∈ Sollist, Evaluate(X,Cla)

10 S2 ← getBest(Sollist)
11 if (S2 ≻ S1) then
12 S1 ← S2

13 if (S1 ≻ Sbest) then
14 Sbest ← S1

15 else
16 Stop ← true

17 until (Stop = true);
18 Return (Sbest)
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changes in a system subject to a cooling process until ti converges to an equilibrium

state. The temperature is used to reflect the tolerance degree of the non improving

solution during the search. The SA [75] search procedure starts with random solution

(the features are randomly selected). The search process generates a neighborhood

from the current solution. The solutions are evaluated and a fitness (subset merit that

is usually assessed in terms of classification accuracy) is assigned to each solution.

If the best solution of the neighborhood is better than the current one, the current

solution is replaced by the best. When the result of neighborhood exploration could

not improve the current solution, the value of the temperature which decreases dur-

ing the search, decides whether the solution (best among neighborhood) is accepted

to replace the current one. In fact, the temperature parameter is associated to a

probability of acceptance of non improving solution. With high temperature such a

solution is more likely to be accepted than in low temperature. Thus, the search will

not get stuck in local minima at the beginning of the search. According to Liu et al

[93], SA was applied to the FS problem in 1992 by Doak [28].

In [86], the SA was used for both feature selection and neural network structure

(topology) optimization. Another application of SA was proposed by [97], where

feature selection was applied to marketing data to build large-scale regression model.

A hybrid and cooperative FS method using SA and Genetic algorithms was proposed

in [43]. SA was also proposed for embedded 8 feature selection [85], where the feature

selection is done and optimized within the classification process.

Tabu Search (TS): Proposed in 1989 by Glover [31, 44], as an effective local

search that was able to escape local minima by going beyond. This optimization

scheme applies an iterative local search based on classical neighborhood exploration.

The specificity of TS is the ability to exchange the current solution with one that is

less fittest when the search is trapped in a local minima. TS is endowed with a list that

saves informations about the solutions recently visited. The list is called tabu because

it prohibits backtracking to all of its solutions and hence prevents cycling. The study

of the tabu list developed the concept of memory or adaptive memory which guides

the search. It has received a wide spread attention since the introduction of TS.

8Embedded feature selection will be detail in section 2.3.3 (p. 44)
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In [134], Zhang and Sun proposed a wrapper based on TS. It can be viewed as

a direct application of the basic TS, where the tabu list saves best solutions result-

ing from the recent neighborhood explorations. The neighborhood, is generated by

adding or removing one feature to/from the current solution. The tabu list is used

as short term memory. The list is of a fixed size l. The TS was compared to several

deterministic sequential schema. It outperformed genetic algorithms on small and

medium sized problems. The fitness function, which evaluates the feature subset ac-

curacy, is based on the aggregation of two objectives: classification accuracy and a

penalization term in direct relation with subset size. In [123], The TS was extended

to the optimization of both input features subset and the classifier. It used also a

short term memory.

As previously stated the short term memory limited by the size of the tabu list

did not definitely relieve the cycling problem, but imposes the use of an additional

parameter that should be carefully defined (tabu list size). The same point of view

was shared by Wang et al. [128] which, recently, proposed a Tabu search using long

term memory for a small FS benchmarks. In fact, it avoids the problem of search

cycling around the same local optima, and the empirical tuning of the size of the tabu

list, by using a long term memory implemented as a linked list. Such a memory is

not only limited to direct and recent neighbors but also to solutions with significant

changes from the current one.

Greedy Randomized Adaptive Search Procedure (GRASP):

GRASP [37, 38] is recent optimization scheme applying an iterative local search

process based on neighborhood exploration. GRASP relies on a multistart schema

to diversify the search and escape local minima. The application to the FS problem

was, recently done by Yusta in [133], where the GRASP was compared to genetic,

memetic, and Tabu search. The results of this empirical study showed the superiority

of GRASP. It is based on two main stages, namely solution construction and local

search procedure using the neighborhood structure (NH(.)) defined by the equation

2.19. It explores all possible attribute permutations. The construction phase gener-

ates a solution that will be improved in the second step by an iterative local search

procedure. The result of a given GRASP iteration, is a solution that reached a local
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minima. The process restarts with the construction of a new solution. This stage is

based on a guided random solution generation. In fact, it requires the construction

of a restricted candidates list (RCL) containing the most accurate attributes. Once

the RCL generated, several solutions are randomly constructed and the best one goes

through the second stage.

NH(S) = {X|X = S ∪ {fi} \ {fj}, ∀fi ∈ X, ∀fj /∈ X} (2.19)

Evolutionary strategies

This section is devoted to the study of a well known stochastic optimization scheme

that is mainly based on populations methods. Such heuristics are generally known

as population based methods, because the optimization process does not rely on one

current solution but on a set of candidate solutions called population. Indeed, the

search is not limited to a particular region of the search space but extended to a more

wide space covered by the population solutions.

Three techniques will be presented here, namely, genetic algorithm, differential

evolution, and estimation of distribution algorithms.

Genetic Algorithms (GA)

GA [46] is considered as one of the leading stochastic optimization schema, reputed

to be one of the most robust meta heuristics dealing with np-hard problems [31]. GA

tries to make the analogy between the natural evolution and the optimization process

using a set of concepts like selection and crossover, mutation. Siedlecki and Sklansky

[119] was the first that have used GA as a feature subset selector.

Several papers and comparative studies consider that wrappers based on GA are

among the most interesting approaches for tackling high dimensionalities and suggest

its use in FS modeling [43, 62, 79, 99, 102, 119]. Algorithm 7 details the basic

steps of a commonly used GA in FS modeling. In such approaches, a given feature

subset represeinting a solution is coded in a binary string (chromosome) of length

N (total number of features). Zero or one are possible values, respectively denoting

the absence or the presence of the attributes at the ith position. A fitness, reflecting

the classification accuracy of the solution is assigned to each solution. The process
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starts by the random generation of the initial population of solutions. The population

evolves through generations by replacing less fittest solutions by enhanced ones. The

evolution process iteratively applies a set of operators to select solutions, to derive

new ones from the combination of existing ones and to explore new regions of the

search space. The evolution process continues until a convergence criterion is met

or a given max iterations number is reached. In this section, we only provide an

introduction of the genetic algorithms limited to main evolution concepts. A detailed

description of both concepts and associated technical aspects will be adressed in the

next chapter.

Several works have used GA in FS modeling either as specific optimization schema

based on GA or as reference method for comparison and assessment of the proposed

FS method [8, 54, 62, 65, 79, 90, 133, 134, 140].

In the comparative study conducted by Kudo and Sklansky in [79], a set of se-

quential approaches were compared to GA and authors conclude that the floating

approaches and GA outperforms sequential approaches but sometimes GA found

better solution. Besides the authors suggest the use of genetic algorithm for problem

dimensions exceeding 100 features. Nevertheless, earlier works, [65] that had con-

firmed comparable efficiency between GA and SFFS, stated that GA becomes worse

than SFFS as the dimensionality increases and reported a GA tendency to prema-

ture convergence. Emmanouilidis et al. [30] proposed an adapted Crossover operator

and it claims that Subset Size Oriented Common Feature Subset Crossover operator

(SSOCF) helps to preserve building blocks with promising performance.

The authors stated, that this procedure allows more flexible neighborhood explo-

ration than sequential search methods. The operator was also applied by the following

evolutionary FS approaches [42, 124].

Multi-Objective GA

Different formulations and evaluation criteria of the FS problem were devised. The

introduction of new criteria in fitness validation have made the FS a multi-objective

problem. Emmanouilidis et al. [30], consider that feature selection problem is well

suited to multi objective optimization. The simplest form involves two objectives:

minimization of the number of features and the maximization of the classification
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Algorithm 7: A Genetic Algorithm for FS

Input:
Size: population size; Cla: Classifier;
pmut: mutation probability; pcross: crossover probability
Maxgen: Total number of iterations;
D: Dataset
Output: S’ : Population of the last generation

1 begin
2 S0 ←generateInitialSolutionSet(Size)
3 P ← S0, Ptmp ← ∅, i ← 0
4 while (i < Maxgen) do
5 Ptmp ←Select (P)
6 Crossover(Ptmp, pcross)
7 Mutate(Ptmp, pmut)
8 Evaluate(Ptmp, Cla, D)
9 Replace(Ptmp, P)

10 i ← i+ 1

11 Return (S’←P)

accuracy. Kudo and Sklansky [79], suggest the use of a penalty term with classification

accuracy (see eq. 2.20).

fitness(X) = J(X)− ǫ|X| (2.20)

where X , |X| and J(X) respectively denote feature subset to be evaluated, the

number of features, and the classification accuracy (1−ErrorRate). The parameter

ǫ is defined by the equation 2.21 as follows:

ǫ = β +
(Jmax − Jmin)

N
(2.21)

Jmax and Jmin correspond to the estimation of the lower and upper bound of the

classification function. N is the total number of attributes.

In [35], a more simple formulation was proposed using a penalty term and a control

parameter λ (see eq. 2.22):
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fitness(X) = J(X)− λ
|X|

N
(2.22)

where N is the number of features. λ is a parameter set to the range of [0..1],

to control the trade-off between the subset size and accuracy. Freitas discussed, in

[41], the diversification the GA objective function by adding a filter oriented criterion.

In such formulation, the GA has both aspects of wrapper and filter approaches. He

reported the fitness function proposed by Bala et al. [14] (see eq. 2.23):

Fitness(X) = Info(X)︸ ︷︷ ︸
filter

− |X|︸︷︷︸
cardinality

+ J(X)︸ ︷︷ ︸
classif. rate

(2.23)

where Info(X) is a filter criterion estimating discriminatory power of X at-

tributes.

We think that, in any case, the three involved criteria are not comparable because

ranges are different. Besides, normalization, the filter criterion could be used more

effectively when it reflects attribute properties that could not be assessed by a wrapper

(i.e. attribute dependency, redundancy, etc).

Recently, a new multi-objective formulation was proposed in [42], where more

specific classification criteria were involved. In fact, assessment procedure does not

only rely on global error rate but it is extended to error measures based on specificity

(see eq. 2.25) and sensitivity (see eq. 2.26). For a classification problem with two

classes (positive and negative labels), classification prediction might generate a true

positive (respectively true negative) with successful classification, or inverted class

labels with a wrong prediction (false positive/false negative). The following Table

illustrates possible prediction combinations.

Data class label
Positive Negative

Prediction Positive true positive (TP) false positive (FP)
Negative false negative (FN) true negative (TN)

Table 2.2: Classification outcomes (confusion matrix)
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Sensitivity, returns the proportion of the successfully classified instances from the

first class (positive class label), whereas specificity tests how well the classification

model identifies instances of the second class (instances with negative class labels).

f1(X) =
|X|

N
(2.24)

f2(X) =
#TP

#TP + #FN
(2.25)

f3(X) =
#TN

#FP + #TN
(2.26)

The proposed multi-objective scheme uses a vector evaluation function F (si) =

〈f1(si), f2(si), f3(si)〉 (see eqs. 2.24, 2.25 and 2.26). Solution are compared in terms

of pareto dominance. A solution is dominant over another one only if it has better

performance in at least one criterion and non-inferior performance with the remaining

criteria. We should note that multi-objective formulation is not limited to fitness

objective aggregation, but requires the adaptation of the evolution operators to make

them able to handle different objectives.

A summary of the several fitness function used in multi-objective context, could

be found in [41].

Weighting methods: Attribute selection could be seen as a particular case of

attribute weighting. Two values are possible (0 and 1) with binary string encoding

for solution representation. Attribute weighting assigns to each feature a weight in

the range of [0..1]. Features are considered as selected only if its associated weighted

is above a given threshold. Evolutionary approaches that have adopted weighted

representation could be found in [41, 63, 107].

Differential Evolution (DE)

Differential Evolution [121] (DE) is a population based approach like GA, and

applies similar operators (i.e. crossover and mutation). The main difference is that

GA relies on crossover as an intensification mechanism, while DE uses a specific

mutation scheme. This main operator is based on the difference between two random
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population solutions. DE is able to add the difference to a third member and hence,

generate new solution (see eq. 2.27).

x̂i = xr1 + f ∗ (xr2 − xr3) (2.27)

where x̂i denotes the resulting solution and r1 �= r2 �= r3 three distinct random

indexes of population members. f is a scaling factor that controls the rate at which

the population evolves. The iterative process starts, after the random generation

of the initial population, by the mutation operator followed by a uniform crossover

[31] between the current solution and the mutation result. Once the new solution

evaluated, the offspring is compared to the current one and the less fittest solution

is replaced. Besides, all the solutions have a chance to be selected without any

reference to fitness. In [73], Khushaba et al. proposed an adaptation of the original

DE, (initially devised for continuous contexts), to the FS problem, by the use of

non-binary solution representation. The solution is of a fixed length9 and encodes

features indexes 10. Redundant indexes are replaced with a specific wheel selection

mechanism. Empirical results stated improvement over both GA and PSO (Particle

Swarm Optimizer). The empirical soundness of the approach was pointed out on

different datasets [8]. A hybrid alternative based on Ant Colony Optimization and

DE was also proposed in [74].

Estimation of Distribution Algorithms (EDA)

EDA [11, 81] is a recent evolutionary paradigm that is considered as attractive

alternative to GA [95]. The method is based on the generation of an initial population.

Next, a number of solution are selected to form a sample. Then a population model

estimating the distribution of the selected individuals generates a new population by

sampling the estimated distribution. The process iterates until convergence. In fact,

EDA builds a probabilistic model to learn from explored solutions and guides the

search process.

Several applications of the EDA in FS with encouraging results in gene selection

could be found in the following studies [11, 17, 64, 116].

9Fixed number of selected attributes
10An array of selected attributes (indexes)
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Swarm approaches

Swarm intelligence is an innovate distributed intelligent optimization paradigm that

took its inspiration from social behaviors by swarming, flocking and herding phe-

nomena [4]. In fact, the swarm techniques, imitate foraging behavior for real ants

in Ant Colony Optimization (ACO), and swarming behaviors of schools of fish, bees

colony, or even social human behaviors. Such an optimization paradigm is based

on a fundamental concept: the stigmergy which is illustrated by collective behavior

and implicit or even explicit communication of optimization components (particles or

ants) through environment. Collective behavior, distributed nature, locality and stig-

mergy make swarm approaches a real attractive alternative to classical evolutionary

optimization.

Particle Swarm optimization (PSO)

PSO [72] is a population based search technique. The population is made of ran-

dom solutions called particles. Each particle flies over the search space with specific

velocities. When they move, respective positions (eash position correspond to a solu-

tion) change and they try to find out better positions by following leading particles

and its own experience. To that end, particles iteratively adjust its velocities accord-

ing to both swarm (best among neigborhood) and personal behaviors. Once velocities

are adjusted, solutions (positions) are updated according to new velocities. Details

about technical aspects and algorithmic issues of the PSO process as well as veloc-

ity updating rules will be provided in chapter 5. The application of PSO to the FS

problem requires the use of the Binary PSO variant (BPSO) [72] and velocities were

mapped into boolean values using a transformation function (i.e. logistic regression

function).

Firpi et al. introduced the swarm FS [40] and its performances were compared

to GA. Another comparison of PSO with GA was done in [12], where the FS has

been applied to, a relatively small sized problem (23 features). The classification

accuracy of SVM (Support Vector Machines) was improved in comparison to genetic

wrapper (GA) and SVM classifier without FS. An improved BPSO (IBPSO) [21] was

applied to high dimensional gene expression data (#features > 2000). The IBPSO

tries to escape local minima by reseting the values of best solution when it was not
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improved after a given number of iterations. By doing so, the velocity updates would

only rely on particle experience. Then the collective behavior would generate another

optimum.

Al-Ani compared in [8], PSO with both evolutionary GA and DE schema. PSO

was outperformed by both evolutionary schema with small (#features < 50) and

medium sized problems (#features > 50).

Ant Colony Optimization (ACO)

ACO approaches focus on the ability of ants to find shortest paths from nest to

food. ACO models the social behavior of ants in both information sharing and decision

making. They are, also based on population scheme, representing a colony of ants.

Ants construct its solutions in a n incremental way, and leave a chemical pheromone

on the ground to remember the trail on the next iterations. The collective behavior

makes the ants the ability to adjust their paths according to the available pheromone

concentration. Since ants are guided by pheromone smell, indirect communication

enable them to find short paths.

In opposition to the PSO paradigm, the ACO are well sweeten for FS, since, ACO

was originally designed for combinatorial optimization problems and adopts solution

construction scheme. In fact, features are represented by a network of nodes and

the ants try to find suitable paths. The ant behavior would be comparable to a FS

sequential algorithm where it starts with a given feature and constructs solution by

adding attributes (i.e. each time the ant selects the next node). In [7], an ACO

approach was proposed to tackle FS problem. The iterative swarm process starts

by the selection of random starting point for each ant (initial feature added to the

solution subset), and then uses pheromone to guide network exploration.

In [5], the ACO was proposed to tackle the FS problem in text categorization where

subset size was taken into account with classification accuracy in the pheromone

update stage. The selection of the next feature to add to the subset which was

materialized with ant move, used the classification accuracy of the subset.
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2.3.3 Embedded methods

Since wrapper methods employ a heuristic search guided by the accuracy of the

classification method, embedded methods use of the classification process learning

itself to both perform feature selection and construct an optimized classifier. In fact,

the ability of some classifiers to discard irrelevant input features, during the learning

process, has been exploited in several researches and especially in bioinformatics (i.e.

decision trees, Support Vector Machines: SVM).

Considered as one of the prominent approaches to FS [54], recursive features elim-

ination (RFE-SVM) [53] extends the basic SVM classification scheme to a classifier

endowed with a FS ability. RFE iteratively removes least relevant feature and re-

estimates the resulting classifier on the remaining features. RFE procedure tries to

select n < N that lead to largest margin in class separation.

This combinatorial problem was solved by a greedy procedure that iteratively

removes the feature which minimizes the margin decrease of hyperplane classification

boundaries. The procedure could be accelerated by removing more than one feature

in each iteration. According to [54] and [90], RFE has shown good performance

on micro-array data and gene selection problems. The combinatorial problem of

embedded selection of subsets of n features was also addressed with meta-heuristics.

Examples include the use of SA [85] and GA [61, 125] to optimize SVM parameters.

An alternative embedded method replacing SVM classifier by Random Forest (RF)

classifier [19] and extending the binary classification (problem with 2 classes) ability of

the initial RFE, to multi-class problems was proposed by Granitto et al. [48, 49, 50].

Reported results [49], pointed out superiority of RF-RFE over SVM-RFE.

The advantage of embedded RFE based methods is its effective classification accu-

racy and moderate computational cost compared to wrapper scheme based on heuris-

tics. However the gain in classification for a given classifier is not guaranteed for a

different classifier with the selected features. Such methods are known to be effective

for the targeted classifier. Numerous classification schema based on parameters opti-

mization and input pruning during the learning process were proposed. For further

details readers could be redirected to the following references [13, 86, 126].
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2.3.4 Hybrid and boosted approaches

Recently, numerous studies started to pay more attention to some of the complemen-

tary aspects of feature selection. The motivation to a such orientation is the exhibited

multi-disciplinary of the FS problem property and the lack of clear adapted method-

ology for the search space exploration. The majority of the new FS alternatives that

are being proposed are hybrid approaches [54, 90]. In fact, numerous approaches con-

sider more than one aspect and aim to design reliable and accurate (i.e. unbiased)

models [87, 127].

Direct combination: filter then wrapper

The simplest form of combination is to use both filters and wrappers. The common

scheme of combination entails two steps. The first one applies a filter to reduce the

number of attributes, and hence, the search space. The second step explores with

a wrapper the subsets built from features returned by the first step. In [127], four

combinations of filter/wrapper methods are proposed using KNN as classifier, and

both forward and backward search procedures (SFS and SBS) with different filters.

Another featured hybrid method was proposed in [114]. BIRS algorithm was

designed as an incremental method that is able to tackle high dimensionality (i.e.

gene selection from micro-array data). BIRS involved two stages. The first one

ranks attributes according to their usefulness to the class using a filter or wrapper

criterion. The second stage, starts from an empty set and incrementally adds ranked

features using wrapper subset evaluation. The feature selection process uses first

stage ranking to replace the exhaustive neighborhood search in high dimensional

space. In fact, attributes were added to the current solution by exploring non selected

attributed following the order provided by the first stage. Besides, the selection of a

given feature requires a significant improvement of fitness or classification accuracy

otherwise the next ranked feature is considered. The significance of the improvement

were statistically validated with t−test.
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Ensemble Feature Selection

As the selection of relevant features is optimized for a particular learning paradigm

(i.e classifiers used for subsets evaluation), the whole process (feature selection and

classification) can be seen, in some ways, biased. For this reason, some of proposed ap-

proaches have focused on the ensemble learning and its relation with feature selection.

Ensemble learning techniques entail the use of more than one classifier which could

cooperate to enhance classification performance. Therefore, the output of a given

FS scheme exploring the search space with an ensemble classifier, is not optimized

for a unique classifier. Furthermore, some recent studies have shown that ensemble

FS increases the stability and the robustness of the FS process [54, 90]. In [115], a

prediction model was designed using feature selection based on ensemble learning.

The exploration of the search space of subsets was done using a genetic algorithm,

whereas the both evaluation and validation involve a set of SVM classifiers.

In addition to the idea of exploring feature subset spaces using an ensemble classi-

fier, Sayes et al. investigated in [115] the aggregation of feature selection approaches

in the same way as the classifier combined with ensemble learning. According to the

authors, the ensemble FS might reduce the risk of unstable results and gives better

approximation of the optimal subset since individual feature selectors could lead to

different suboptimal solutions.

The ensemble FS was based on feature ranking aggregation (SU, Relief and RFE-

SVM). The feature selectors were feeded with different subset instances, generated

with bootstrap aggregation (bagging). The aggregation scheme of the second stage

is based on weighted voting. Recently, a similar ensemble scheme was applied to the

identification of bio-marker from micro-array data [3]. Reported results confirm the

stability of the ensemble FS based on RFE-SVM for high dimensional problems.

Memetic Approaches (MA)

In [58], authors considered that the use of memetic approaches was among the more

sophisticated recombination and hybridization issues. In a MA, the local search

evolves as a component of the whole evolutionary process. These boosting methods
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are being shown as promising solutions in more than one combinatorial optimization

research [58]. By this way, global search of genetic 11 processes will be endowed with

the intensification mechanism of the local search.

Seok et al. [103], suggested to embed local search procedures to within GA using

deterministic sequential search procedures as local search operators. Reported results

showed improvement over floatting search (SFFS) and GA. Zhu et al. suggested, in

[140], the use of filter as local search operator. The devised memetic algorithm is based

on genetic wrapper where solutions are refined using filter criterion. Empirical study

showed that the designed memetic schema was able to improve classification accuracy

and reduce the number of selected features, and the best results were obtained with

memetic schema based on Relief filter. Besides, the memetic GA based on Relief filter

outperforms the memetic approach proposed in [103].

A similar memetic schema (MBEGA) was proposed in[139], and applied to high

dimensional problems (#features > 1000) using micro-array datasets. The neigh-

borhood structure is almost identical to the proposed in [140], except the use of an

adapted add/delete operation. In fact the add is based on SI, and the remove op-

eration delete redundant feature using the Markov blanket approximation used by

the FCBF algorithm. Empirically, the memetic scheme outperforms GA and BIRS,

but comparable accuracy was obtained with FCBF. In [138], the two last memetic

schema were empirically assessed with micro-array data and both approaches showed

similar results. Another memetic scheme based on mutual information and genetic

algorithm was devised by [62].

In [35], a boosted memetic schema was devised using a multivariate Filter. In

fact, The evolutionary process and its operators were guided by NMIFS filter 12. The

filter was involved within initial population generation, chromosomes mutation, and

local search.

Recently [133], a local search operator was deployed in three different optimization

paradigms (GA, GRASP and TS). The local search procedure was not based on filters

but inspired from sequential search. It relied on a neighborhood structure based on

11the concept of memetic computing was recently extended to several optimization paradigms and
was not only limited to evolutionary processes or GA

12the filter was proposed within the same paper [35] and was based on information theory measures
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attribute exchange. Results, provided for small dimensional problems (#features <

100), pointed out superiority of the GRASP and TS over memetic and basic GA.

Hybrid heuristics

This section covers another kind of hybridization where the combination where not

limited to wrappers and filters or the use of local search to enhance exploitation

performance but extended to metaheristics combination. In addition to the com-

bination of the local search with evolutionary process, other hybridization schema

were proposed to tackle FS problems. The common point between the following ap-

proaches are the seek of behavioral complementarity in search space exploration and

the trade-off between intensification and exploration capabilities.

In [74], a hybrid system based on ACO and DE were devised where DE evolves

solutions provided by ants. The DE crossover and mutation were applied at the end

of each iteration. The newly generated solutions have replaced those resulting from

the ants search. The resulting subsets, are then used to update pheromone trails

and the process restarts. Empirical study pointed out the superiority of the hybrid

scheme over GA, ACO, BPSO, and DE.

Recently, another hybridization of evolutionary and swarm approaches was devised

to tackle a functional genomic problem: the prediction of protein function [102]. The

hybrid ACO-GA evolved in parallel both feature selection meta-heuristics. At the end

of each iteration, solutions are evaluated and fittest subsets are selected to update

pheromone trails for the ACO and GA population. The ants use the pheromone

updates to look for new paths and adjust previous subsets found. The empirical

results showed the superiority of hybrid scheme toward GA and ACO. Nevertheless,

the evaluation procedure was in some way biased, since the compared algorithms did

not have the same computational complexities, running time, and number of fitness

function calls.

The third recent hybrid approach combined a SA with GA in [43]. The devised

hybrid scheme involves three components: SA, GA, and local search based on hill

climbing. The search starts with a SA, then followed by a GA, and terminates with

local search solution refinement. The GA starts the evolution process with the best
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solution returned by SA. Intensive empirical study was conducted and the proposed

approach was compared to sequential procedures (SFS, SBE and SFFS), ACO and

PSO. The first stage of the optimization process showed comparable results to, almost,

all the compared approaches, whereas second and final stage have outperformed all

the approaches. The mixed behaviors (global-local search) of the approach made the

optimization approach able to avoid premature convergence.

2.3.5 Distributed feature selection

Parallel and distributed implementations of meta-heuristics seem quite naturally as an

effective alternative to speed up the search for combinatorial optimization problems.

Moreover, the multi-instances scheme might explore different region of the search

space and provides more flexible implementation by testing different combination of

methods and parameter settings.

A sequential and parallel scatter search were devised in [94]. Scatter search (SS)

is a meta-heuristics based on evolutionary scheme. Such an approach generates a

population of solutions and subset called reference set. The reference set is not only

limited to fittest solutions but includes the most diverse solutions in the population.

Once the reference set is built, solutions are selected combined and improved itera-

tively. Improved solution could update the reference set via replacement procedure.

Solutions are combined with a variant of uniform crossover that preserves common

selected features. The resulting new solutions were refined by a local search schema.

The parallel version of the scatter search applies different parameters to a set of

sequential instances evolving simultaneously. Both sequential and parallel SS were

assessed on on small and medium size benchmark problems of the UCI repository

[16]. Sequential SS pointed out slight improved over GA, however parallel SS showed

comparable results to sequential one. Suh result could be explained by the absence

of interaction between parallel instances.

In [136], a multi-population GA approach was proposed. The GA evolves two

populations which cooperate using solution migration. A generalized version of the

multi-population schema was proposed in [33], using a genetic island model. Each
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population is assigned to an island and simultaneously evolves with the remaining

ones. A collaboration protocol was devised to manage solution exchange. Empiri-

cal results showed the effectiveness of distribution as well as island collaboration to

enhance final feature subsets accuracy and avoid premature convergence.

Subpopulation applies crossover mutation and local search operators. The popula-

tions communicate and share informations about explored search space via an agent.

The authors defined both collaboration and competition policies between populations.

Finally, the proposed distributed model has attempted to enhance the ability of

sequential and centralized algorithms by a simultaneous multi-start scheme. However,

search diversification issues (i.e. hybrid filter-wrapper schema, hybrid heuristics, dif-

ferent local search schema evolving simultaneously within unique distributed model)

were not yet explored.

Figure 2.5 summarizes the plethora of the approaches devised as wrappers and

surveyed throughout the previous the previous sections. Each approach is illustrated

by featured reference.

As a conclusion, we provide a table (Table 2.3) which lists books and papers that

have focused on either comparative studies or state of the art reviews 13. References

are compared according to their state of the art coverage and the type and the depth

of the empirical study.

2.4 Feature selection modeling challenges

Feature selection challenging problems could be summarized as follows:

• effective modeling : enhancing accuracy of the proposed approaches as well as

the complexity of the search process and its underling mechanisms.

• assessment methods: the reliability of the devised approaches mainly depends

on the evaluation methods. The particularity, of the FS problems is that the

assessment procedure requires in addition to evaluation of classification accuracy

13Theses references was, in a part, used to build feature selection survey provided by the current
chapter
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of the selected attribute subsets, a validation stage which is in most of the cases

independent of the search process. Besides, a plethora of evaluation criteria

exist for both subset evaluation and individual attribute relevance.

• high dimensional data: existing feature selection approaches, are not able to

cope with combinatorial nature of high dimensional problems (i.e. thousand of

attributes). Even though, recent studies started to devise new alternatives, the

adaptability of the optimization paradigms to the high dimensional FS modeling

requires further investigations.

2.5 Conclusion

In this chapter we introduced basic material of feature selection research field and

surveyed main modeling trends. As data evolve, new challenges arise and, hence the

expectation of feature selection are elevated. The three following chapters investigates

performance improvement issues through the study of new and hybrid optimization

paradigms.
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Title Type of pub. Year of pub. Survey Empirical Study Ref.
Comparative Wrapper -

filter com-
parison

Beha-
vioral
study

Wrappers for feature
subset selection

Journal
paper

1997 ++ + - - [76]

Comparison of algo-
rithms that select fea-
tures for pattern clas-
sifiers

Journal
paper

2000 ++ ++ - + [79]

Feature Selection:
Evaluation, Appli-
cation, and Small
Sample Performance

Journal
paper

1997 + ++ - - [65]

Benchmarking At-
tribute Selection
Techniques for Dis-
crete Class Data
Mining

Journal
paper

2003 ++ ++ + - [57]

Feature Extraction,
Foundations and
Applications

Book 2006 +++ +++ ++ - [54]

Toward Integrating
Feature Selection
Algorithms for
Classification and
Clustering

Journal
paper

2005 +++ - - - [93]

Feature Selection Us-
ing Mutual Informa-
tion: An Experimen-
tal Study

Conference
communi-
cation

2005 + ++ - - [88]

Computational meth-
ods of feature selec-
tion

Book 2008 +++ ++ ++ - [90]

A review of feature se-
lection techniques in
bioinformatics

Journal
paper

2007 +++ - - - [117]

Data Mining and
Knowledge Discovery
with Evolutionary
Algorithms

Book 2002 ++ - - - [41]

Table 2.3: State of the art and comparative studies references
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Figure 2.5: Wrapper models



Chapter 3

Memetic Feature Selection: Local

search and hybridization issues

3.1 Introduction

Evolutionary algorithms have been successfully applied to the problem of feature se-

lection [54, 90]. Different models, techniques and evolutionary approaches have been

explored, with particular interest to the application and the adaption of genetic algo-

rithms to the FS problem. On the other hand, several recent works have developed

a number of hybrid and boosted techniques ranging from the heuristic adaptation

to the combination of different optimization schema. The aim is to improve, both

feature selection classical modeling tools which struggle to gain attended reliability,

especially when they face high dimensional data [90]. As a result, some trends in fea-

ture selection have attempted to tackle this challenge by proposing hybrid approaches

based on the combination of the local search with genetic algorithms. The resulting

memetic scheme seems to be an interesting hybridization alternative since it offers

the possibility to use specific problem knowledge as well as local search design and

integration alternatives. Section 2 reviews fundamental concepts of the genetic and

memetic design. Next, we discuss some of the featured memetic approaches that

were recently applied to the FS problem. Section 4, details the proposed local search

operators and evaluates and discusses its empirical effectiveness.
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3.2 Genetic and Memetic Algorithms

In this section we set the scene for the rest of the chapter. We briefly overview and

compare technical and behavioral concepts of evolutionary and memetic algorithms.

This is motivated by the fact that suggested approaches as well as featured and

reference ones -used in this chapter- are based on either evolutionary or memetic

mechanisms.

3.2.1 Basic concepts

Evolutionary computing is considered as one of the more popular optimization schema

[31, 58]. Reputed to be successful in the application of Darwinian principles in

problem solving, different paradigms have emerged (genetic algorithms, genetic pro-

gramming, evolution strategies, etc). A genetic algorithm tries to make the analogy

between the natural evolution and optimization process. For a given population of

individuals, mechanisms inspired form natural selection are used to evolve individuals

according to their fitness.

Memetic Algorithms (MAs) refer to an attractive and growing research field, of

a class of stochastic heuristics combining the global search nature of Evolutionary

Algorithms (EA) with local search techniques, improvement procedures, mechanisms

of search guidance and learning. The local search targets the improvements of the

solutions quality. Tools and mechanisms used by the local search involves, in most

of the cases, techniques of neighborhood exploration (i.e. similar solutions: solutions

with common features). MA are based on the concept of meme [58]. Conceptually, a

meme can be defined as an information unit or a pattern for cultural evolution and

transmission. Indeed, memes are to culture as genes to biology. Cultural evolution can

be understood through the same basic biological and natural selection mechanisms.

The fact that a solution moves to a similar one to improve its fitness could be seen as

transmission that enhances the solution. The MA paradigm is more inspired by the

social concepts in relation with culture than genetic ones. Indeed, culture is generated

when individuals becomes more similar due to the mutual social learning. the sweep

of culture allows individuals to move toward more adaptive patterns of behaviors.
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Common concepts

As all population based metaheuristics three common concepts in direct relation with

design issues will be introduced in the following paragraphs.

Representation The solutions of the problem being solved are represented as

chromosome where positions and values respectively correspond to genes and alleles.

A solution representing a set of decision variables are metaphorically encoded on

the same way as chromosomes encode genetic material within genes. Many synonyms

exist like candidate solution or individual [58]. The proposed encoding schema should

be able to represent any solution of the targeted search space. Often, the adopted

encoding schema require further interpretation to get true decisions variables values.

In this case we can talk about phenotype and genotype spaces. The representation

could be defined by the relation R = (P,G,M), where P , G respectively denote

phenotype, genotype spaces and M the mapping function with domain in G and

range in P which provides interpretation of the representation. In the case of feature

selection problem, the target is to select optimal features subset. Hence, features

are either selected or not. The binary string representation (one variable state per

attribute) has been widely adopted in FS modeling [62, 87, 90].

Solution assessment Solutions are made comparable according to a value as-

signed to each chromosome: the fitness. It measures the solution quality. The eval-

uation function measures solution interestingness, and it is commonly called fitness

function. Problems typically solved by evolutionary algorithms are optimization prob-

lems, which are formulated with an objective function maximizing or minimizing the

fitness.

Population Both Genetic and memetic algorithms are meta heuristics based

on populations. By opposition to some optimization strategies focusing on best so-

lution found or the current solution, evolutionary strategies evolve a set of solutions

denoted as a population. The concept of population is fundamentally determinant

for evolutionary strategies. Firstly, the population is dynamic, it changes or evolves
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over generations. Fittest solutions have the advantage to be maintained on the next

generation, whereas less fittest or weak ones are threatened to be replaced, or even

eliminated. Secondly, the population evolves different genotypes or phenotypes stem-

ming from different regions of the search space. Such representations of solutions offer

the global optimization process, different evolution alternatives through population

diversity.

Search intensification and diversification Intensification encourage the move

to attractive regions of the neighborhood whereas, diversification makes the moves so

far, in the aim to explore new regions of the search space or to avoid local minima.

The exploration potential is in direct relation with the ability of the proposed heuris-

tic to explore different regions of the search space and to maintain an acceptable

diversity level. Operators implementing such mechnisms will be detailed in the next

section.

3.2.2 Components and algorithms

This section is devoted to algorithmic aspects of both genetic and memetic processes.

For each process we, first, introduce main components, then we illustrate their usage

within evolutionary design.

Common GA and MA components

A set of components are used in both evolutionary processes. They try to imitate

some of the featured genetic and natural evolution behaviors. The common point

between these components (operators) is its tight relation to the population (selection,

crossover, mutation). In fact, all of them are applied to a subset or a targeted solutions

of the population. The components are designed as operators. All these operators,

materialize stochastic behavior of the evolutionary processes.

Selection-Replacement operators Population evolves throughout the update

and replacement of population candidates. The evolution is guided by a couple of
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selection mechanisms: selection and replacement. The selection operator, also

known as parent selection or mating selection mechanism [31], allows and prepares

better individuals to become parents of the next generation. New solutions are derived

from the selected ones. The selected solutions are not limited to the fittest ones. They

are randomly selected according to a given elitism policy (selection pressure). The

selection operator forms a subset to undergo variation in order to create new solutions.

The resulting subset is also called mating pool. Once the new solutions generated,

another selection mechanism defines candidates that will be present in the population

of the next generation. The process is not deterministic and is controlled by an elitism

policy. Since some of the existing solution might be replaced, this operator is usually

called replacement or survivor selection mechanism.

Mutation operator In general, the role of the variation operator is to gener-

ate new solutions from the existing ones. The mutation operator imitates the genetic

mutation process by arbitrarily changing the values of solution elements (decision vari-

ables). In the case of binary presentation, values of selected positions are switched

from 1 to 0 and inversely. The operator is applied to the mating pool candidates

with a probability pmut (parameter of the mutation operator). Problem-specific op-

erator could be designed, to fix the problem of mutation effectiveness and population

diversity. The role of mutation operators regarding search space, is to move existing

solutions to new regions that might be interesting for exploration or to escape the

evolutionary process from solutions locally optimal.

Recombination operator The second variation operator is crossover. It is

also inspired from the genetic crossover applied to chromosomes. It merges infor-

mation from two solutions (parents) of the mating pool to generate new offspring

solutions. For example, this could be done by exchanging a portion of a given chro-

mosome according to a given cutting position (one point crossover) or by exchanging

different portions of the chromosome. Like mutation, the crossover operator is ap-

plied, with stochastic mechanisms, to mating pool solutions with pcross probability.
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Such variation operators materialize inheritance mechanisms which depend on sim-

ilarity degree between solutions. If the best solution elements are combined, the

offsprings might improve the search.

Genetic algorithm process

The above presented stochastic operators are, generally, applied within a genetic

algorithm. Basic and commonly used GA steps are described by Algorithm 8.

Algorithm 8: An example of Genetic Algorithm

Input:
Size: Population size;
pmut: Mutation probability; pcross: Crossover probability
Maxgen: Total number of iterations
Output:
Sbest : Best solution found

1 begin
2 Population P ← GenerateInitialSolutionSet(Size)
3 foreach (s ∈ P ) do
4 Evaluate(s)

5 Sbest ← getBest(P )
6 Ptmp ← ∅ ; i ← 0
7 while (i < Maxgen) do
8 Ptmp ←Select (P )
9 Crossover(Ptmp, pcross)

10 Mutate(Ptmp, pmut)
11 foreach (s ∈ Ptmp) do
12 Evaluate(s)

13 Replace(Ptmp, P )
14 Sbest ← getBest(P )
15 i ← i+ 1

16 Return Sbest

The process starts by the random generation of the initial population of chromo-

somes (Size parameter defines the number of solutions to generate). The individuals

evolve during the search resulting in different population generations. The iterative
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procedure consists five of steps, typically, scheduled in five steps: (i) selection of a

subset of candidate solutions for combination (line 8) in the mating pool Ptmp; (ii)

random pairs are selected from the mating pool, and new pairs are generated by ex-

changing some parts of the selected solutions (line 9) using the crossover operator

which is applied with a probability pcross (iii) according to the mutation probability

pmut a subset of the mating pool solutions are candidates for mutation, in this step

each solution is randomly perturbed to generate a new solution. (iv) all the new

solutions are evaluated and a fitness value is assigned to each solution. (v) another

selection mechanism called replacement operator designates the candidates that will

be replaced by the new solutions and decides which ones of the mating pool that have

to quit the evolution process.

According to the fitness value, solutions are assessed, selected and replaced during

the search. The more the fitness of a given solution is high, the more it have a

chance to survive within population. The four involved operators (selection, crossover,

mutation and replacement) are either stochastic or applied in a stochastic manner.

Hence, they could be applied in different ways. The adaptation of GA for a given

problem involves the adequacy of the operators with nature of the problem and the

search space [31].

Memetic operators: Local search possibilities

The idea of applying memetic algorithms aims at the improvement of the search capa-

bilities with Local Search (LS). In fact, the genetic process as well as its components

will be endowed with intensification possibilities materialized by the add of a new

operator 1.

According to Krasnogor et al. [58], three components characterize the behavior

of a local search procedure 2:

• Neighborhood generating function: defines the set of solutions that could be

reached by the application of the local search to a given solution. Such a function

1the term operator is used on same way as evolutionary operators (mutation, selection and
crossover operators)

2throughout the thesis, LS procedure and LS operator will be used interchangeably
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is also known as a move operator. The resulting neighborhood structure depends

mainly on the nature of the move. In fact, for a given solution a different set

of neighborhoods could be considered depending on the nature of the move

procedure. The effectiveness of the local search depends, in a part, on the

structure of the neighborhood.

• Depth: the depth parameter (d) defines how the LS will be applied, it controls

the scope of the LS. Indeed, it could be applied once d = 1 or iteratively, the

process is restarted with the best solution found until no improvement is found

(Hill Climbing scheme). It could, also, be used as a mean to control the cost of

the neighborhood exploration.

• Pivot rule: defines the criterion of accepting an improving solution. Such a

criterion is used to prune the solutions of the neighborhood to explore. Pivot

rule could, also, aggregate a set of criteria, particularly, in multi-objective op-

timization problem, and composite neighborhood structure.

The pseudo-code of the local search operator is illustrated by the Algorithm 9

Algorithm 9: Pseudo-code of a L.S. Algorithm

Input:
S: Solution
Output: Sbest: Improved Solution

1 begin
2 s ← S , Sbest ← s
3 repeat
4 NHs ← GenerateNeighborhood(s)
5 foreach (si ∈ NHs) do
6 if (pivot condition satisfied ∧ si > Sbest) then
7 Sbest ← si

8 s ← Sbest

9 until depth condition satisfied;
10 Return Sbest
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Memetic algorithm: general scheme

MAs are derived from GA since they inherit main components and enhance intensi-

fication mechanism with LS. Besides, MA could be considered as a hybrid system,

since it allows the combination of global and local search mechanisms. Design issues

of a MA depends on:

• the LS components and associated configurations (i.e. depth, neighborhood

structure)

• the integration of the LS within genetic process

• the rationale for the use of specific refinement procedure with EA (i.e. adapted

operators)

• the use of problem specific knowledge to adapt the design of the LS operator.

Figure 3.1 illustrates the different levels of local search integration alternatives. The

impacts on evolution process as well as on final results vary according to the integra-

tion level and the design of the LS operators. Besides, adaptive effort, hybridization

strategies as well as use of specific problem knowledge could be implemented outside

of the local search operators at different levels of the evolutionary process.

Some authors consider that global search mechanism of GA is the dominant be-

havior. On the other hand, Memetic Algorithms endow GA components, with more

effective intensification and hybridization mechanisms. The memetic design is more

effective when we look for a trade-off between evolutionary components and local

search capabilities, than to simply boost GA with a local search. Such conclusion,

will be confirmed at different levels of the empirical study.

We should also note that recent memetic design was extended to several optimiza-

tion paradigms. Memetic algorithms cover all hybridization issues as well as the use

of valuable problem-knowledge within the implementation of mechanisms enhancing

the search.
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Figure 3.1: Memetic hybridization issues
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3.3 Memetic algorithms for feature selection

Memetic approaches as well as genetic ones and other heuristic strategies were sur-

veyed in the previous chapter. In this chapter we recall some of the concepts in-

troduced within the state of the art, and we detail them by providing technical and

algorithmic materials in relation with memetic modeling. More specifically, we review

and discuss local search operators and their impacts on the memetic process. Some

of the detailed operators will be used as reference approaches for the empirical study.

3.3.1 MA of ”Yusta09”

In [133], a recent MA was proposed and compared to different methaheuristics. The

proposed local search operator is based on attributes exchange (replacing a selected

attribute by an unselected one). The neighborhood is based on all pair combinations

between selected and discarded attributes (see eq. 3.1). Intuitively, the operator could

be considered adapted to the FS problem, since it looks for best possible replacement

which maximizes the fitness. The local search was iterative (d ≥ 1), and stops when

a local minima is found. The same operator was applied to both Tabu and Grasp

heuristics. The adopted refinement procedure seems to be expensive since all exchange

combinations should be explored. The complexity of the LS operator is the order of

Θ(N2) ∗ d where N is the attributes number, and d is the search depth. Although

the LS seems to boost GA results, the adopted memetic design represents a possible

alternative among several ones using the same LS operator (section 3.4.1 3 studies

different integration alternatives as well as their impacts on final results).

On the other hand, with such complexity, the LS operator could not be applied

to benchmarks with significant attributes number.

NH(S) = {X|X = S ∪ {fi} \ {fj}, ∀fj ∈ S, ∀fi /∈ S} (3.1)

3p.70
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3.3.2 WFFSA and MBEGA

This paragraph is devoted to a new class of local search operators. WFFSA [140] and

MBEGA [139] respectively denote Wrapper-Filter Feature Selection Algorithm and

Markov Blanket-Embedded Genetic Algorithm. The particularity of the respective LS

operators is that they allow the resulting memetic algorithms not only to add the

local search to the evolutionary process, but allow the hybridization of filter-wrapper

scheme. From the algorithmic point of view, both local search operators rely on the

same refinement procedure. They are based on two basic operations: Add(.) and

Del(.) (delete of one attribute). The neighborhood of the LS operator is based on

the application of Add(.) a times and Del(.) procedure d times to a given solution

S. The size of the neighborhood is controlled by a parameter l. The total number of

combinations is limited to l2 (see eq. 3.2).

0 ≤ a, d ≤ l (3.2)

The local search operators of WFFSA and MBEGA are illustrated by Algorithm

10. Only the filter F to apply is different.

We recall that for the sake of simplicity we opted for the below equivalence notation

(see eq. 3.3) to facilitate the readability of solution comparison.

SA ≻ SB ⇔





SA.f itness ≥ SB.f itness, (lower error rate)

∨ (or)

‖SA‖ < ‖SB‖, if(SA.f itness = SB.f itness)

(3.3)

All Add(.) and Del(.) combinations are respectively bounded by a and d. The

unique random generation of the couple < a, d > (Line 4) guarantees the exploration

of all combinations after l2 iterations.

Both Add(.) and Del(.) uses filter ranking to respectively add and eliminate at-

tributes from current solution. In addition, attributes are selected in a stochastic

manner through the use of a random selection (wheel selection) based on a given level
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Algorithm 10: L.S. of the WFFSA and MBEGA Algorithms

Input:
S: Solution
l: search depth
F : Filter
Output: Sbest: Best solution found

1 begin
2 s ← S ;Sbest ← s
3 for i = 1 to l2 do
4 Generate a unique random pair (a, d) where 0 ≤ a, d ≤ l
5 j ← 0;k ← 0
6 while (j < a) do
7 Add(s, F )
8 j + +

9 while (k < d) do
10 Del(s, F )
11 k + +

12 Evaluate(s)
13 if (s ≻ Sbest) then
14 Sbest ← s

15 s ← S

16 Return Sbest

of elitism [139]. Add(.) procedure for both LS operators is detailed by Algorithm 11.

The only difference between MBEGA and WFFSA is the filter used in the delete

Del(.) operation. The Del(.) procedure for MBEGA operator is based on the princi-

ple of Blanket Markov [77, 138, 139]. The Blanket Markov approximation [138, 139]

for redundancy removal is illustrated by equations 3.4 which recall the definition

of symmetrical uncertainty SU, and equation 3.5 which defines approximation con-

straints. MBEGA4 Del(.) procedure deletes redundant attributes whereas WFFSA

applies Del(.) procedure within local search to discards irrelevant features.

SU(fi, fj) = 2
[

IG(fi|fj)

H(fi)+H(fj )

]
(3.4)

4Local search operator of MBEGA
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Algorithm 11: Add procedure

Input:
S: Solution;
R: relevance measure (filter scores)
Output: Sbest : new solution

1 begin
2 Rank unselected features in S according to R
3 Select a feature fi with high score using wheel selection
4 /*features (selected) with higher relevance score are more likely to be

selected */
5 Sbest ← S

⋃
{fi}

6 Return Sbest

For a given two features fi and fj , (i �= j), fj is said to be an approximate Markov

blanket of fi only with the following two conditions:




SU(fj , C) ≥ SU(fi, C) ∧ (and)

SU(fi, fj) ≥ SU(fi, C).
(3.5)

Algorithms 12 and 13 summarize the delete procedure of the WFFSA and MBEGA

respectively. WFFSA was initially proposed as a hybrid system introducing filter

scores within genetic algorithms. Next, MBEGA was derived from WFFSA to handle

high dimensional problem, particularly micro-array data sets. In [138], a comparative

study assesses empirically the effectiveness of MBEGA and WFFSA on large data set.

Globally, the results showed that the two operators provided comparable accuracies

with slight advantage to MBEGA. In 2010, Zexuan et al., provide a unifying scheme

for memetic feature selection modeling [137]. In this work, MBEGA andWFFSA were

considered as two inherited instances of the proposed model. The model abstracts

the tools leading to the identification of attribute redundancy as well as the tools

used to select added features.

The neighborhood structures of these operators were made of solutions with dif-

ferent hamming distances5. We consider that possible improvement returned by such

5Hamming distances measures the the similarity between solution (binary strings)
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Algorithm 12: Del procedure of the WFFSA L.S.

Input:
S: Solution
R: relevance measure (filter scores)
Output:
Sbest: new solution

1 begin
2 Rank selected features in S according to R
3 Select a feature fi (from the ranked list) using wheel selection
4 /*features (selected) with lower relevance score are more likely to be selected

*/
5 Sbest ← S\{fi}
6 Return Sbest

search mechanisms (neighborhood structures) is appreciated but it would be more

interesting to reach locally optimal neighborhood solution through the design of ef-

fective composite local search (composite neighborhood structures).

3.3.3 MA-C

Correlation based memetic algorithm (MA-C) is a recent memetic approach pro-

posed by Kannan and Ramaraj [70]. It was compared to a genetic algorithm and

to WFFSA. The comparison to the GA showed that it succeeded to reduce the size

of the final subset of attributes, with comparable classification levels. Nevertheless,

the performances are globally comparable to WFFSA. The results are not surprising

since the devised memetic scheme (MA-C) is based on SU filter ranking and Blan-

ket Markov approximation (see eqs. 3.4, and 3.5). From one hand, MA-C is not

technically different from MBEGA since they use the same assessment tools. On the

other hand, they are not conceptually, similar because MA-C local search operator is

deterministic, while MBEGA local search limits the neighborhood size and relies on

stochastic selection, hence its lower computational complexity.
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Algorithm 13: Del procedure of the MBEGA L.S. [139]

Input:
S: Solution
R: relevance measure (SU filter scores)
Output:
S’ : new solution

1 begin
2 X ← S
3 Rank selected features in X in a descending order based on SU
4 Select a feature fi (from X) using wheel selection
5 /*features (selected) with higher relevance score are more likely to be

selected*/
6 Eliminate all features in X\{fi} which are in the approximate Markov

blanket of fi

7 If no feature eliminated remove fi

8 S’ ← X
9 return S’

3.3.4 Memetic FS design challenges

From one hand, the memetic scheme is motivated by the hybrid design modeling,

the use of specific problem knowledge, and the empirical effectiveness. On the other

hand, the local search component of memetic approaches seems to be not adapted

due to its evaluation cost and its associated computational complexity.

Moreover, some other factors having direct impact on final results and behavioral

evolution, like LS integration issues, valuable memetic design, and trade-offs between

global and local search require further investigations. The local search challenges in

feature selection modeling could be summarized as follows:

• most of the existing local search operators were designed to tackle small FS

problems. Such operators require additional adaptation effort to become appli-

cable to high dimensional data sets.

• memetic design: with existing LS operators the evolutionary processes are dom-

inated by the intensification mechanisms. An appropriate trade-off should be

found between global and local searches.
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• one of the problems of the existing LS operators is the size of the neighborhood.

More guided neighborhood exploration and effective refinement procedures are

required.

3.4 Proposed Memetic Schema

In this section, we propose a set of local search operators which try to respond to some

of the previously formulated requirement. We develop design and algorithmic aspects.

Next, we discuss and assess empirical results. These operators, are organized in three

classes. The first class covers basic local search operators, that could be applied to any

problem based on binary representation6. The second class is devoted to LS operators

based on composite neighborhoods. The third class is devoted to the adaptation of

existing refinement procedures to high dimensional spaces. The local search operators

try to preserve neighborhood structures of two previous LS classes and provide some

alternatives of effective intelligent exploration. In addition, this class of operators

materialize effective hybridization schema between filter and wrapper modeling.

3.4.1 Basic local Search operators

In this section, we study the behavioral aspects of two basic local search operators:

Attribute Flip (AF) and Bit Flip (BF). These local search procedures, were initially

proposed, in [128] and [133] respectively.

The aim of this introductory section, is to show the importance of the effectiveness

of the memetic design and the impact of LS integration at different levels of the

evolutionary process. In fact, memetic behaviors as well as results are not necessarily

the same even for a memetic configuration based on the same local search operator.

According to the previously presented local search operators and to the possible local

search integration alternatives within genetic processes, this section is devoted to the

study of some possible memetic schema. Local search procedures will be formalized

as local search operators, integrated to genetic processes and assessed according to

6Not necessarily adapted to FS modeling
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their contribution and the enhancement of the initial evolutionary processes.

The first operator is based on the BF local search. It explores the neighbor-

hood of a given solution, by exchanging the state of one feature at a time (selected

to unselected and inversely). The hamming distance is equal to 1. The resulting

neighborhood is formalized by equations 3.6, 3.7 and 3.8.

NHBF (S) = {X|X = SF (S) ∪ SB(S)} (3.6)

where SF (S) and SB(S) denote respectively neighborhoods issued from the at-

tribute add and removal from the current solution. It could be also seen as the union

of two search heuristics: sequential forward (SFS) and backward (SBE) procedures.

(see p. 30-31)

SF (S) = {X|X = S ∪ {fi}, ∀fi ∈ F, fi /∈ X} (F: feature set) (3.7)

SB(S) = {X|X = S \ {fi}, ∀fi ∈ X} (3.8)

On the other hand, Attribute Flip operator (AF) constructs the neighborhood

using permutation between selected and non-selected features (see eq. 3.9). All com-

binations are considered. Two properties characterize such neighborhood structure:

(i) the hamming distance is equal to 2 which requires more exploration effort; (ii) and

the operator preserves the feature subset size.

NHAF (S) = {X|X = S ∪ {fi} \ {fj}, ∀fj ∈ S, ∀fi /∈ S} (3.9)

The impact of local search depth will be assessed empirically. The pivot rule did

not discard any solution of the considered neighborhood. The two operators explore

different regions of the current solution neighborhood. There is no overlapping region

(NHBF (S) ∩ NHAF (S) = ∅) and the second neighborhood structure is much larger

than the first one which would require more computational time for exploration.

Algorithm 14 illustrates an example of iterative LS procedure that could be applied

to FS problem. NH(.) refers in this example to a neighborhood function (i.e. NHAF ,
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Algorithm 14: Example of Iterative Local Search Operator applied to FS prob-
lem
Input:
S: Solution
Cla: Classifier for fitness evaluation
Output:
Sbest: Best solution found

1 begin
2 S1 ← S , Sbest ← S1
3 Stop ← false
4 repeat
5 Sollist ← NH(S1) /*Neighborhood generation*/
6 foreach (Si ∈ Sollist) do
7 Evaluate(Si, Cla)

8 S1 ← getBest(Sollist)
9 if (S1 ≻ Sbest) then

10 Sbest ← S1

11 else
12 Stop ← true

13 until (Stop = true);
14 Return (Sbest)
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NHBF ).

Hybridization issues

The proposed memetic schema target the study and assessment of integration alter-

natives of the above presented operators within various configurations and processes.

The local search could be applied to GA, at different stages of the evolution process.

A simplest way of integration, is to apply LS to the best solution at the end of each

iteration. Besides, the application of the refinement operator to the new solutions of

the mating pool and even to all the population individuals is an exiting alternative

since it allows the solutions to evolve simultaneously, over generations. However such

alternative requires intensive exploration effort, in comparison to the application of

LS to one solution.

These two memetic schema are respectively applied with both AF and BF local

search operators. Besides, any local search operator may vary its depth parameter.

It could be applied once (depth = 1), or iteratively, by the reapplication of the

local search to the newly improved solution until no improvement will be found 7

(depth ≥ 1). The eight combination alternatives will be evaluated to assess the

behavior of the resulting memetic processes in FS modeling.

The assessment of the proposed schema covers theorical and empirical compari-

son through the evaluation of the computational cost and the study of experimental

results.

Complexity

Table 3.1 compares the computational complexity of the proposed local search op-

erators. In fact, the operators complexities depend on three factors: neighborhood

structure, LS depth and the application mode (the solutions to which it will be

applied). The first operator, sequential BF applied to the best solution of the gener-

ation involves the smallest complexity, whereas the iterative AF operator applied to

the newly added solutions generates the highest computational burden.

7Locally optimal solution
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LS-Operator Order of Complexity Parameters

Sequential BitFlip(Best) Θ(N) N : number of features
(depth = 1) AttribFlip(Best) Θ(N2) m : mating pool size

BitFlip(all) Θ(N.m)
AttribFlip(all) Θ(N2.m)

Iterative BitFlip(Best) Θ(N.d) d: local search depth
(depth ≥ 1) AttribFlip(Best) Θ(N2.d)

BitFlip(all) Θ(N.m.d)
AttribFlip(all) Θ(N2.m.d)

Table 3.1: Complexity of local search operators

Empirical results8

In this section, we report mean values, standard deviation, and statistical t-test for

the assessment of the statistical validity of the obtained results toward the baseline

method (GA). For each experiment we present best solution fitness (lowest general-

ization error rate %), test accuracy on independent dataset, average CPU runtime,

cardinality of best solution (#Attributes) and the gain in comparison to GA fitness.

A ranking based fitness is provided for each dataset. We should note that the nega-

tive t-test9 values correspond to improvement over the baseline method (because we

tackle a minimization problem), and the confidence level of 99% requires absolute

t− value greater than 2.528 for 20 independent runs.

The experiments mainly involve benchmarks belonging to small, medium, and

large problems (dimensionality size is ranging from 57 to 2000 attributes).

Globally, we can point out, from the four Tables ( 3.2, 3.3, 3.4, and 3.5), the supe-

riority of memetic schema over GA at the expense of computation cost resulting from

additional evaluations. Another interesting result confirmed by different datasets, is

the highest and the lowest gain of memetic algorithms, the best improvements were

obtained with the iterative AF operator applied to all the solutions and the smallest

ones were obtained by the non-iterative version of the BF operator when it is only

8Empirical study evaluation criteria and assessment procedures are detailed by the protocol
validation section (Annex 1 see p. 165)

9Stundent Test
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applied to the best solution. Such a result, could be explained by the relative im-

pact of neighborhood size and computational complexity of local search operators.

Furthermore, when we compare results improvements over the four datasets, we can

depict a remarkable enhancement of memetic schema with colon cancer data set.

The results are interesting because it is the dataset with the largest search space

(2000 attributes), and the relatively good GA performance. The obtained results in

Table 3.4 are attractive and encouraging for tackling high dimensional search spaces

and, particularly, genomic data.

On the other hand, the memetic improvement are not proportional to operators

computational complexity. In fact, some sequential LS operators are more interesting

than some iterative ones. For example, sequential AF applied to all solutions of the

generation is always ranked at the second position, and performing better than some

iterative LS schema.

Moreover, the top-3 operators, involve the same neighborhood structure: AF op-

erator. Such neighborhood could be, relatively, adapted to FS problem, particularly,

with sequential LS.

Conclusion

The empirical study as well as the computational complexity assessement of LS op-

erators showed the effectiveness of some memetic shema; and give idea about the

trade-off that could be found between cost, accuracy and LS problem adaptation.

3.4.2 Composite Local Search Operators

Since, sequential forward (SFS) and backward (SBS) approaches could be consid-

ered and formalized as local search procedures (see eqs. 3.7 and 3.8), any combination

of these two heuristics could be easily implemented as LS operator with composite

neighborhood structure. The simple application of these two heuristics either sep-

arately or together might not contribute to a significant improvement. Its major

drawback is the nested effect problem [54]. The attribute added with SFS or removed
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VALIDATION ERROR%
LS applied to GA Measures Fitness ANN NB CPU (s) # Attrib. # Eval Gain%GA RANK

No LS (GA) Mean: 9,32% 10,74% 7,81% 14774,13 15,04 1089
Sd: 0,95% 1,45% 1,10% 14759,99 3,15 0
t-test 0 0 0 0 0 -

SEQ BitFlip(Best) Mean: 8,54% 11,10% 8,24% 35672,26 13,87 3089 8,37% 8
Sd: 1,02% 2,04% 1,27% 36614,23 2,94 0 -
t-test -18,92 3,71 4,95 22,08 -12,67 - -

AttribFlip(Best) Mean: 6,88% 9,61% 7,26% 32705,52 15,96 3089 26,18% 3
Sd: 1,15% 2,25% 1,49% 28955,4 4,88 0 -
t-test -37,43 -8,41 -5,85 18,74 5,31 - -

BitFlip(all) Mean: 8,19% 10,58% 8,23% 91471,7 15,45 11289 12,12% 6
Sd: 0,98% 1,98% 1,50% 40881,06 3,2 0 -
t-test -29,95 -1,7 7,22 31,64 1,49 - -

AttribFlip(all) Mean: 5,75% 8,95% 6,73% 95083,75 17,6 11289 38,30% 2
Sd: 0,69% 1,93% 1,50% 45427,35 4,47 0 -
t-test -73,7 -10,69 -23,21 44,9 85,05 - -

Iterative BitFlip(Best) Mean: 8,44% 9,98% 7,49% 36313,91 15,61 3171,17 9,44% 7
Sd: 1,17% 1,75% 1,56% 34137,85 4,38 32,04 -
t-test -20,55 -6,81 -4,72 54,25 8,08 - -

AttribFlip(Best) Mean: 7,01% 9,62% 7,27% 35944,87 14,87 3209,43 24,79% 4
Sd: 1,01% 2,10% 1,44% 38229,41 3,63 33,37 -
t-test -45,78 -11,65 -9,22 23,64 -3,54 - -

BitFlip(all) Mean: 7,93% 10,35% 7,70% 128806,75 15,35 14180,5 14,91% 5
Sd: 0,93% 1,50% 1,18% 112289,05 3,1 418,7 -
t-test -54,13 -3,5 -2,06 55,51 2,61 - -

AttribFlip(all) Mean: 5,52% 7,69% 6,30% 106967,85 17,6 12911 40,77% 1
Sd: 0,49% 1,22% 1,31% 49985,26 2,91 137,52 -
t-test -151,28 -31,84 -22,96 51,35 85,05 - -

Table 3.2: Data set: SpamBase (57 Attrib.)

with SBS could not be removed or added by the same operator. In addition, the em-

pirical study, of the previous section, clearly, showed that AF operator outperformed

BF one in different memetic schema. The problem of effective refinement procedure

could be handled from two perspectives. The first, considers that the simple appli-

cation of SFS, SBS or even BF could be enhanced more effectively (i.e. looking for

redundancy among selected attributes), whereas the second, tries to find appropriate

of add/remove combinations. The problem was in a part, fixed and some of the re-

quirements of the two points of view were satisfied by some heuristics. The nesting

effect problem was addressed by the floating search strategies [54, 120]. The empirical

studies showed that floating strategies outperform classical sequential search proce-

dures but are not so effective than evolutionary strategies [54, 90]. The effectiveness

toward an evolutionary strategy could be explained by the relative luck of diversifi-

cation mechanisms of floating heuristics. The idea here is to bring the appropriate

use of the floating search within a genetic process. The integration of such heuristics

could be designed as local search operators since they explore neighborhood of the
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VALIDATION ERROR%
LS applied to GA Measures Fitness ANN NB CPU (s) # Attrib. # Eval Gain%GA RANK

No LS (GA) Mean: 13,80% 6,88% 12,01% 7891,74 13,09 1092
- Sd: 1,67% 1,94% 4,18% 7468,36 3,22 0 -
- t-test 0 0 0 0 0 - -

SEQ BitFlip(Best) Mean: 14,05% 7,53% 13,07% 16106,09 12,96 3092 -1,81% 8
Sd: 1,28% 2,73% 3,23% 15283,92 2,95 0 -
t-test 1,83 5,94 4,4 24,54 -0,48 - -

AttribFlip(Best) Mean: 12,24% 6,72% 12,71% 16355,78 15,04 3092 11,30% 4
Sd: 1,58% 2,45% 3,92% 14378,28 4,43 0 -
t-test -9,19 -1,36 3,23 23,98 6,81 - -

BitFlip(all) Mean: 13,55% 7,14% 12,70% 61595,86 14,09 11292 1,81% 7
Sd: 1,59% 2,70% 3,85% 59565,85 3,39 0 -
t-test -1,96 2,14 2,34 474,37 2,95 - -

AttribFlip(all) Mean: 10,65% 6,66% 12,04% 60927,74 15 11292 22,83% 2
Sd: 1,36% 2,05% 3,84% 57579,19 3,33 0 -
t-test -15,68 -1,84 0,13 173,43 5,22 0 -

Iterative BitFlip(Best) Mean: 13,49% 7,11% 11,54% 17913,52 14,78 3147,65 2,25% 6
Sd: 1,55% 1,74% 3,05% 17418,26 3,67 22,33 -
t-test -2,37 2,92 -1,51 23,05 6,59 0 -

AttribFlip(Best) Mean: 11,74% 6,15% 11,77% 18753 18,05 3193,36 14,93% 3
Sd: 1,33% 1,35% 2,94% 16008,79 3,54 25,87 -
t-test -16,1 -6,86 -1,2 23,52 19,29 0 -

BitFlip(all) Mean: 13,15% 7,19% 11,65% 70264,39 14,96 13143,3 4,71% 5
Sd: 1,19% 2,12% 3,02% 66756,71 3,2 275,87 -
t-test -4,82 2,19 -1,93 37,65 6,87 - -

AttribFlip(all) Mean: 9,73% 6,33% 10,70% 73319,09 17,17 12521,57 29,49% 1
Sd: 1,28% 1,45% 2,45% 74439,68 2,53 105,89 -
t-test -31,76 -7,29 -6,94 34,36 14,01 - -

Table 3.3: Data set: Sonar (60 Attrib.)

solution to be enhanced. The resulting new local search operators based on floating

heuristics (SFFS and IFFS [54, 101]) could be also considered as an improved version

of the LS operators of the previous section. Besides the neighborhood structure is

more diversified, due to the alternated forward add and backward remove. Three

memetic schema were derived from floating search approaches.

Floating Local search: FLS1

The first operator is inspired from the SFFS and SBFS heuristics [120]. The explo-

ration is based on two search directions: forward and backward searches. The new

neighborhood structure is generated from the search directions and updating rules.

The search continues if at least one of the two search directions leads to an improve-

ment. We recall that SFFS and SBFS respectively start the search from a known

predefined set of features (empty set and full set) and define a main and alternative

search direction (main: can stop the entire search; alternative: explored after the
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VALIDATION ERROR%
LS applied to GA Measures Fitness ANN NB CPU (s) # Attrib. # Eval Gain%GA RANK

No LS (GA) Mean: 6,52% 6,58% 12,19% 31079,73 23,18 3032
Sd: 2,92% 3,14% 4,41% 22980,17 7,45 0
t-test 0 0 0 0 0 -

SEQ BitFlip(Best) Mean: 4,46% 6,28% 10,32% 38454,95 20,55 5032 31,60% 4
Sd: 2,05% 2,97% 4,59% 30297,6 6,6 0 -
t-test -20,87 -2,11 -7,8 5,73 -5,45 - -

AttribFlip(Best) Mean: 4,64% 7,06% 10,06% 41058,14 21,41 5032 28,83% 5
Sd: 2,25% 2,96% 3,23% 37162,49 8,55 0 -
t-test -14,38 5,19 -15,01 7,69 -4,35 - -

BitFlip(all) Mean: 4,78% 5,96% 11,49% 200004,95 22,05 13232 26,69% 6
Sd: 2,96% 2,98% 2,96% 102160,5 6,34 0 -
t-test -17,19 -5,06 -4,23 22,81 -3,15 - -

AttribFlip(all) Mean: 3,59% 5,74% 11,49% 198320,55 22,05 13232 44,94% 2
Sd: 1,62% 2,59% 3,12% 102691,3 6,78 0 -
t-test -24,16 -4,14 -8,47 40,91 -3,15 - -

Iterative BitFlip(Best) Mean: 5,58% 6,29% 11,47% 39703,43 20,91 5073,74 14,42% 7
Sd: 2,25% 3,17% 4,39% 30596,31 7,36 30,84 -
t-test -5,31 -1,42 -1,37 12,2 -3,23 - -

AttribFlip(Best) Mean: 4,35% 6,94% 11,84% 39066,78 20,09 5068,09 33,28% 3
Sd: 2,17% 2,81% 3,44% 31127,5 6,31 10,33 -
t-test -15,9 2,48 -3,93 6,94 -6,98 - -

BitFlip(all) Mean: 5,65% 7,02% 11,38% 249361,3 18,45 15199,5 13,34% 8
Sd: 2,86% 3,59% 3,86% 142791,7 6,51 711,49 -
t-test -4,35 1,71 -5,02 57,21 -12,59 - -

AttribFlip(all) Mean: 2,83% 6,28% 9,89% 213912,1 20,2 13790 56,60% 1
Sd: 1,88% 3,27% 3,86% 122469,18 7,03 66,38 -
t-test -21,43 -1,33 -23,24 29,99 -6,06 - -

Table 3.4: Data set: Colon cancer (2000 Attrib.)

main one and taken into considerations only if it improves the search). In comparison

to original versions of the floating search heuristics, FLS1 transforms the heuristic in

a local search:

• defines a composite neighborhood structure from search directions

• LS operator is able to refine solution without any size constraint.

• accepts an improvement provided by forward or backward search without con-

sidering main or alternative search direction.

Algorithm 15 details the main steps of the FLS1 operator where SF (.) and SB(.)

respectively denote forward and backward search procedures.

Besides, there is no risk of cycling, because the Neighborhood procedures are

only applied to improved solutions. Note that FLS1 is not comparable to either

AF or BF operators, although that they are based on SFS and SBS neighborhoods.

Nevertheless, it preserves some features of the two operators. Indeed, BF applies
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Algorithm 15: Floating LS: FLS1

Input:
Cla: Classifier for solution evaluation
S: Input Solution
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 imp ← true /* Flag*/
4 while (imp) do
5 Sollist ← SF (S, Cla)
6 foreach (X ∈ Sollist) do Evaluate(X,Cla)
7 S1 ← getBest(Sollist)
8 if (S1 ≻ Sbest) then
9 Sbest ← S1

10 else
11 imp ← false

12 Sollist ← SB(Sbest, Cla)
13 foreach (X ∈ Sollist) do Evaluate(X,Cla)
14 S2 ← getBest(Sollist)
15 if (S2 ≻ Sbest) then
16 Sbest ← S2
17 imp ← true

18 Return Sbest;
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VALIDATION ERROR%
LS applied to GA Measures Fitness ANN NB CPU (s) # Attrib. # Eval Gain%GA RANK

No LS (GA) Mean: 17,14% 13,38% 17,33% 158683,53 85,79 1311
Sd: 0,90% 1,13% 1,31% 72380,76 17,63 0
t-test 0 0 0 0 0 -

SEQ BitFlip(Best) Mean: 16,81% 13,86% 17,09% 490897,85 93,7 3311 1,93% 8
Sd: 0,91% 1,11% 1,30% 222623,21 14,37 0 -
t-test -23,47 6,69 -2 26,47 11,23 - -

AttribFlip(Best) Mean: 15,52% 14,03% 17,29% 519275,2 92,25 3311 9,45% 3
Sd: 1,08% 1,67% 1,59% 347110,37 46,42 0 -
t-test -65,25 2,69 -0,42 17,8 2,1 - -

BitFlip(all) Mean: 16,46% 14,02% 17,36% 1785624,68 82,74 11511 3,97% 6
Sd: 1,24% 1,91% 1,75% 898120,57 20,56 0 -
t-test -36,87 7,77 0,22 37,76 -3,46 - -

AttribFlip(all) Mean: 14,76% 14,22% 16,83% 1892140,75 89,4 11511 13,89% 2
Sd: 0,80% 2,25% 1,30% 1141857,26 42,76 0 -
t-test -71,41 7,94 -5,5 33,02 11,46 - -

Iterative BitFlip(Best) Mean: 16,80% 14,40% 16,59% 525793,95 91,2 3516 1,98% 7
Sd: 0,91% 1,50% 1,67% 290212,63 26,49 55,2 -
t-test -16,38 11,1 -8,17 43,48 5,22 - -

AttribFlip(Best) Mean: 16,03% 14,16% 16,76% 468881,85 93,9 3512,5 6,48% 4
Sd: 1,03% 1,78% 1,87% 315436,97 56,97 40,3 -
t-test -26,71 5,14 -6,36 28,42 1,19 - -

BitFlip(all) Mean: 16,29% 13,79% 16,67% 2591560,62 83,1 15471,95 4,96% 5
Sd: 1,15% 1,50% 1,52% 1343356,45 22,25 600,1
t-test -24,61 5,56 -7,31 51,56 -8,75 - -

AttribFlip(all) Mean: 14,19% 14,91% 16,61% 1384673,95 51,65 13731,5 17,21% 1
Sd: 0,92% 1,30% 1,38% 763942,71 32,57 272,29 -
t-test -138,18 20,26 -7,89 172,14 -11,26 - -

Table 3.5: Data set: Arrhythmia (279 Attrib.)

SF (.) and SB(.) to the same initial solution while, with FLS1, SB(.) is applied to

the improved solution after the application of SF (.).

The neighborhood structure of the FLS1 operator is made of diversified sub-

neighborhoods which are adapted dynamically according to the ability of basic opera-

tors to improve the current solution. The design of different neighborhood structures

with LS operators is highly recommended, since it alleviates the risk of the local

minima’s and diversifies the search [58, 60].

Floating Local Search with Iterative Backtrack (FLS2)

The second local search operator derived from the floating search heuristics applies

the same principle for attributes add and removal. Once an attribute Xi is added to a

given solution, some existing (selected) attributes could be correlated or redundant to

Xi. The idea is to eventually remove all redundant attributes which do not decrease

classification accuracy of current solution.
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In FLS2, the same floating search scheme as in FLS1 is adopted, except the

fact that backward search procedure SB(.) is not applied once but the backtrack is

applied iteratively until no improvement could be reached. Comparatively to FLS1,

FLS2 requires more computational time than FLS1 but might lead to more compact

subset size. Algorithm 16 illustrates main steps of the FLS2 operator.

Improved floating Local search: IFLS

The idea of IFLS is inspired from a recent approach which attempted to improve

the floating search heuristic (IFFS) [101]. The Improved Floating search heuristic is

made of the set of steps of the SFFS search but adds a new step to handle the case

where the current solution is not improved by the backward stage. The new step,

according to the authors of IFFS, consists of replacing the weakest feature. In other

words, the new stage involves the application of the AF operator. The local search

operator, inspired from the IFFS heuristic, could be designed in a manner to enhance

composite neighborhood structure. In fact, when backtrack fails to improve solutions

AF operator is called. Algorithm 18, summarizes the three main stages of the local

search operator (forward search, backward search, and attributes exchange) as well

as the updating rules governing transitions between associated neighborhoods. The

third stage might be interesting when it allows neighborhood structure diversification,

and also to eventually escape local minima. We should note that the particularity

of IFLS operator is that its complexity is greater than AF in the case where the

third stage is iteratively performed. Figure 3.2 illustrates different local search

operators proposed in this section as well as their relation with previously presented

LS operators and reference approaches.

Empirical results10

In this section, we assess and compare the three composite local search operators and

compare them to both memetic approaches based on AF .

10Empirical study evaluation criteria and assessment procedures are detailed by the protocol
validation section (Annex I see p. 165)
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Algorithm 16: Floating LS procedure with iterative backtrack: FLS2

Input:
Cla: Classifier for solution evaluation
S: Input Solution
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 imp ← true /* Flag*/
4 while (imp) do
5 Sollist ← SF (S)
6 foreach (X ∈ Sollist) do
7 Evaluate(X,Cla)

8 S1 ← getBest(Sollist)
9 if (S1 ≻ Sbest) then

10 Sbest ← S1

11 else
12 imp ← false

13 while (true) do
14 Sollist ← SB(Sbest)
15 foreach (X ∈ Sollist) do
16 Evaluate(X,Cla)

17 S2 ← getBest(Sollist)
18 if (S2 ≻ Sbest) then
19 Sbest ← S2
20 imp ← true

21 else
22 Break /* Flag*/

23 Return (Sbest)
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Algorithm 17: Simplified version of FLS2

Input: S: Input Solution
Cla: a classifier for solution evaluation
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 imp ← true /* Flag*/
4 while (imp) do
5 S1 ← SF (Sbest, Cla)
6 if (S1 ≻ Sbest) then
7 Sbest ← S1

8 else
9 imp ← false

10 while (true) do
11 S2 ← SB(Sbest, Cla)
12 if (S2 ≻ Sbest) then
13 Sbest ← S2
14 imp ← true

15 else
16 Break

17 Return Sbest
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Algorithm 18: Improved floating local search: IFLS

Input: S: Input Solution
Cla: Classifier for solution evaluation
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 imp ← true /* Flag*/
4 while (imp) do
5 S1 ← SF (Sbest, Cla)
6 if (S1 ≻ Sbest) then
7 Sbest ← S1

8 else
9 imp ← false

10 while (true) do
11 S2 ← SB(Sbest, Cla)
12 if (S2 ≻ Sbest) then
13 Sbest ← S2
14 imp ← true

15 else
16 S2 ← AF (Sbest, Cla)
17 if (S2 ≻ Sbest) then
18 Sbest ← S2
19 imp ← true

20 else
21 Break

22 Return Sbest
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Figure 3.2: Composite LS operators

Tables C.4, C.5 (see ANNEX III, p. 176-177) detail evaluation and validation

accuracies of the best solution found by the application of memetic algorithms respec-

tively endowed with the FLS1, FLS2 and IFLS local search operators to memetic

approaches based on AF . According to the reported results, the floating operators

globally outperform the AF operator on fitness and at least one of the validation crite-

rion. For the operator FLS, fitness results were improved for all the six benchmarks.

Whereas, both Soybean and Arrhythmia benchmarks, confirmed the superiority of all

the composite operators in comparison to AF .

Besides, at least one of the proposed composite operators succeeded to improve all

validation and evaluation qualitative criteria (fitness, and two validation classifiers).

When comparing the three floating LS operators, FLS seems to be the more

effective and it is followed by the IFLS. Improved results in favor of floating LS

operators, could be explained and argued by the structure of the neighborhood. In

fact, the composite neighborhood structure provides to the refinement procedures

implemented by the LS operators more intensification issues. In addition, when com-

paring computational complexities, the more effective operators among composite
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ones, requires less exploration effort.

Although that basic and composite operators, studied within current and previ-

ous sections succeeded to enhance evolutionary processes, the computational effort

required by respective local searches and induced by the neighborhoods exploration,

should be adapted to be able to cope with high dimensional datasets.

3.4.3 Adapting LS for high dimensional spaces

From one hand, local search operators contribute to refine solutions and to globally

enhance evolutionary process.

Results of the two previous sections confirmed local search effectiveness in memetic

context. On the other hand, hoping to tackle high dimensional problems with local

search operators facing thousand of attributes seems to be unrealizable. More for-

mally, LS complexities in the order of Θ(N2) 11 or even Θ(N) require more com-

putational effort than the evolutionary process itself. Two questions formulate the

problems associated to such challenge: (i) how to make LS independent or less depen-

dent to the total number of features? (ii) is the exhaustive neighborhood exploration

mandatory? The main idea behind the LS adaptation to the high dimensional spaces

relies on the alleviation of the neighborhood exploration cost. The design of the new

operators is based on the use and the valuable integration of a specific problem knowl-

edge to the local search operators. Such a knowledge can be provided by filters and

the resulting attribute ranking. The ranking is not systematically used to select or

discard attributes but brings out interesting neighborhood exploration issues. Several

hybrid approaches have attempted to integrate filter through global search (classical

filter-wrapper scheme) [54, 87, 90, 114].

Nevertheless they faced the problem of attributes initially discarded by a filter at

the beginning of the search and the wrapper couldn’t reintegrate them. The problem

is similar to the nested effect. We think that the use of filter scores with local search

is appropriate for design of hybrid approaches, since all the attributes are considered

within the global search process, and only refinement procedures act with a reduced

11case of AF (N : number of attributes)
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Figure 3.3: Schema

or targeted subset of features.

More than ten local search operators are devised and will be presented in this

section. They are organized in families and schema. Families involve deterministic

and stochastic operators whereas schema refer to some common steps adapted by

the local search processes. Schema could be considered as way to preserve some

neighborhood structures, particularly composite ones.

Memetic schema

Devised memetic schema refer to an abstract description of some proposed local search

operators. They could also be seen as templates describing local search main steps.

The operators derived from these schema illustrate some of the possible alternatives

of local search improvement or adaptation to high dimensional spaces. Two schema
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are proposed. The first one is mainly based on the MBEGA local search operator

[139] which is illustrated by the Algorithm 10. The attributes are added or/and re-

moved according to the filter scores with an upper bound for the maximal number

of attributes to add or remove. The neighborhood structure is diversified (a different

hamming distance for each solution), when it is compared to classic local search op-

erator. Nevertheless, we consider that the eventual improvement resulting from this

operator is not optimal and could be enhanced. In fact, the LS neighborhood has

the advantage to be of a reduced size and controlled by a parameter but the result-

ing solution could be refined since it does not represent a local minima for different

neighborhood structures. For this reason, the scheme that we propose here, endows

the MBEGA local search with an additional step involving AF and BF operators. In

fact, if we assume that MBEGA operator provides the best local minimum that could

be reached from a given solution (before the application of the LS of MBEGA), the

solution is not necessarily optimal for a different neighborhood structure. The new

stage adapts the refinement procedure to the result of the MBEGA local search. If

the solution were not improved, it seems suitable to opt for a neighborhood struc-

ture with a higher probability to enhance the solution like AF. On the other hand,

successful application of the MBEGA local search procedure, leads necessarily to an

improvement. Consequently, the additional stage adopted with the scheme did not

require an extensive search since the initial solution was already enhanced. Hence,

we suggest for this stage, BF operator which is less costly than the AF operator. We

should also note, that the AF is more effective and time consuming than the BF oper-

ator. Indeed, the global-local search scheme design seems to be relatively equilibrated

by offering more chance to the non improved solutions and less expensive operator

for the improved ones. This scheme will be called MB.

The second scheme is based on floating operators. Such a choice is motivated

by the fact that the floating heuristics overcome the problem of nested effect. Be-

sides, from the design point of view of LS operator, the composite neighborhood

and dynamic switch between them bring more diversification possibilities to LS. This

scheme is mainly based on operators derived from FLS and IFLS operators. We

should note that some of the LS operators and the adaptation alternatives proposed
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in the few next paragraphs cover LS operators that adopt as scheme and other that

are not depending on them. Besides the schema impact on results and on behaviors of

memetic approaches will be discussed and studied empirically. Figure 3.3 illustrates

schema as well as their relation with previously presented LS operators and reference

approaches.

Pruning alternatives: deterministic components

In this section, we study pruning issues in relation of the adaptation of the local

search operators to high dimensional spaces. The main ideas behind the adaptation

are three folds: (i) maintain the previously presented local search operators which

proved its effectiveness (ii) focusing the adaptation effort on the alleviation of the

local search neighborhood exploration cost (iii) integration of valuable knowledge to

guide local search processes (i.e. neighborhood pruning).

Pruned AF search space: AF+

Since AF local search is not applicable for even few runs, because of the cost of the

exhaustive neighborhood exploration (i.e. the application of AF operator to a solution

of 20 selected attributes of the colon dataset requires 39600 evaluations for only one

iteration), a new way of neighborhood structure definition and exploration is required.

AF+ is the improved version of AF operator. The AF neighborhood is represented as

a matrix composed of regions. Our target is to look for the most interesting regions to

explore and to avoid exhaustive exploration by keeping acceptable performances. Lets

start by mapping matrix areas and the illustration of the neighborhood structure. As

the AF operator replaces an existing attribute by an unselected one, the neighborhood

covers all the combinations of selected and unselected attributes.

The neighborhood space is represented by a matrix where the matrix rows refer to

the selected attribute indexes (one per row) and the columns refer to the indexes of

unselected attributes. Each matrix cell illustrates a possible combination of attribute

exchange, and hence to a solution of the neighborhood. Attributes on both columns

and rows were sorted according to their filter scores. The more relevant attributes
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are set on the first rows/columns, and attributes with lowest scores are on the latest

lines/columns. We set two thresholds a and b to divide matrix horizontally and

vertically in four regions. The region boundaries are defined the axes materializing

the thresholds. Figures 3.4 illustrates neighborhood space organization and how the

regions are limited with thresholds.

Figure 3.4: AF neighborhood segmentation

The aim of such organization is to localize improving solutions, and if possible

the best one. According to a dedicated experimental study targeting several high di-

mensional datasets, the AF+ was applied to 1000 solutions randomly generated. The

empirical results confirm that both first improving solutions and best ones reached by

the local search operators belongs to regions I and IV in more than 76% of the cases.

Parameters a and b refer to cells having scores greater than the mean of respective

scores (for the selected and the unselected attributes list).

Such interesting result paves the way to a pruning strategy limiting the search

to regions I and IV and discarding the remaining ones. The local search operators

(see Algo. 19) builds from the input solution two sorted lists one for the selected
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attributes and the second for the remaining ones (Lines 1-5). Next the neighbor-

hood exploration starts by exploring the targeted regions. Line 8 returns the region

identifier of given attribute exchange combination. All combinations belonging to a

relatively non interesting regions are discarded (Lines 9-10).

Algorithm 19: Pruned AF: AF+

Input:
S: Input Solution
F : Filter
Cla: Classifier for solution evaluation
Output:
Solbest: Best solution within neighborhood

1 begin
2 UnSellist ← getUnSelectedAtt(S) /* unselected attributes*/
3 Solbest ← S
4 Sort(UnSellist, F,Desc)
5 foreach (y ∈ UnSellist) do
6 foreach (x ∈ S) do
7 /* x: attribute */
8 r ← getRegion(x, y, F ) /* see fig. 3.4 */
9 if (r = 2 ∨ r = 3) then

10 continue

11 S1 ← S ∪ {y} \ {x}
12 Evaluate(S1, Cla)
13 if (S1 ≻ Solbest) then
14 Solbest ← S1

15 Return Solbest

Why MB scheme?

The MB scheme extends from the MBEGA local search procedure. The last stage

adds to the initial local search a new stage to improve the resulting solution. This is

motivated by the composite structure of the neighborhood. Solution which are not

improved by the first neighborhood structure might be improved by another neigh-

borhood structure. This idea is widely accepted, as a way to escape local minima
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as well as in other optimization paradigms like Variable Neighborhood Search (VNS)

which diversifies the search by changing the neighborhood structure. From the other

hand, the additional stage requires more of exploration efforts and exploration costs.

One can consider that the two operators are not comparable, since the MB scheme

involves two stages. For this reason, we empirically compare the impact of the ap-

plication of the MB scheme regarding MBEGA local search. Besides, we compare

the MB operator to the MBEGA applied twice. Table 3.6 reports results of mean

improvements in comparison to the initial solution fitness. The improvements refer to

the percentage of gain compared to initial solutions. The experiments were repeated

ten times 12, and in each run 1000 solutions were randomly generated, then the local

search operators were applied to each solution. The results clearly show how the MB

scheme outperforms MBEGA applied once and twice. Besides, the experiments have

been applied by varying the length parameter l of the local search of the MBEGA

operator (l = 3;l = 5). The value of l denotes the threshold for allowed add/remove

operations. In both configuration the MB scheme confirms its superiority. Such result

confirms the advantages of exploration with composite neighborhoods. The opera-

tor derived from the MB scheme used for these experiment is the MB+ which be

developed in the next section and experimented within evolutionary context.

Operators l = 5 l = 3
Data(# attrib.) MBEGA MBEGA*2 MB MBEGA MBEGA*2 MB

Sonar(60) 39, 33% 42, 72% 46, 04% 31, 99% 36, 54% 43, 1%
Soybean(35) 38, 97% 46, 81% 49, 35% 29, 9% 37, 87% 43, 16%
Arrhythmia(279) 18, 38% 25, 28% 27, 12% 10, 91% 15, 32% 22, 06%
Semeion(256) 16, 28% 19, 53% 25, 06% 9, 67% 14, 17% 19, 76%
Colon(2000) 62, 11% 66, 22% 78, 03% 53, 47% 58, 84% 74, 48%
Lymphoma(4026) 23, 27% 34, 71% 36, 95% 12, 15% 19, 66% 25, 95%

Table 3.6: Mean improvement of LS operators applied to random solutions

A Blanket Markov LS enhanced by pruning capabilities: MB+

The previously proposed operatorAF+ will be now used in a scheme based on Markov

blanket local search [139]. In fact, the MBEGA local search operator will be enhanced

12mean values were reported
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with operators based on pruning capabilities: AF+ andBF+. Algorithm 20 illustrates

main steps of the LS operator MB+ which is derived from the MB scheme. The BF

operator could be seen as composite operator merging neighborhoods of the forward

and the backward search procedures. BF+ prunes LS neighborhood using the same

threshold technique. Thresholds are set to the mean of the selected and the unselected

attribute scores. The neighborhood of BF+ (see Algo. 21) operator is pruned through

the adjustment of the search on both directions.

Algorithm 20: MB operator based on pruning: MB+

Input:
S: Input Solution
F : Filter
Cla: a classifier for solution evaluation
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← MB(S) /* MBEGA LS operator*/
3 if (S ≻ Sbest) then
4 Sbest ← AF+(Sbest, Cla, F ) /* Algo. 19 */

5 else
6 Sbest ← BF+(Sbest, Cla, F ) /* Algo. 21 */

7 Return Sbest

Empirical results

Tables C.6, C.7 and C.8 (p.178-180) detail evaluation and validation accuracies of the

best solution found by the application of memetic algorithms respectively endowed

with the AF+ and MB+ local search operators.

On the other hand, AF+ and MB+ were compared to the MBEGA algorithm and

results were reported in Tables C.9, C.10, and C.11 (p. 181-183). All the proposed

memetic approaches apply the local search operators to the best solution of the current

generation. They were applied only once. Such limitation could be argued by the

cost of the LS neighborhood exploration.
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Algorithm 21: Improved version of BF: BF+

Input:
S: Input Solution
F : Filter
Cla: a classifier for solution evaluation
Output:
Sbest: Best solution within neighborhood

1 begin
2 UnSellist ← getUnSelectedAtt(S)
3 m ← getMeanScores(UnSellist, F ) , n ← getMeanScores(S, F )
4 foreach (x ∈ Selall) do
5 if (Score(x, F ) < Min(m,n)) then
6 continue

7 if (x ∈ S) then
8 S1 ← S\{x}

9 else
10 S1 ← S ∪ {x}

11 Evaluate(S1, Cla)
12 if (S1 ≻ Sbest) then
13 Sbest ← S1

14 Return Sbest

The two first operators AF+ and MB+ provide closes results to the basic genetic

algorithms and to the memetic approach MBEGA. According to the fitness values the

level of 0% was reached by the three compared approaches (GA and memetic based

on AF+ and MB+) on different benchmarks. Nevertheless, error classification rates

reported by the fitness column were not outperformed by either memetic algorithms.

On the other hand, the some improvements were obtained with validation data sets

and classifier although the gaps between evaluation and validation errors. Improve-

ments were more frequent with best subsets size and running time. When we compare

results of the AF+ and MB+ operators with two reference approaches, MB+ seems to

be more efficient than AF+, while both operators provide slightly better results than

GA but are not more effective than MBEGA. The major remarkable improvements

confirmed by both operators were its abilities to reduce the number of attributes while
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keeping acceptable performances (in comparison to reference approaches).

FLS+: Floating search enhanced by pruning capabilities

The floating search operator presented here is derived from the above presented float-

ing schema. In fact, the FLS+ preserves the main steps of the FLS operator (search

direction, switching search direction rules and best solution updates). The changes

is only operated on the process components. The forward and the backward searches

are not explored in an exhaustive way. They couldn’t be dependent on the number

of attributes. The proposed forward and backward components are based on filter

knowledge. Filter scores can guide the search to improve current solution. Algorithm

22 details main steps of the local search operator with the new components SF+ and

SB+. In comparison to the classical forward and backward procedures, both SF+

and SB+ respectively described by Algorithms 23 and 24 add filter as a parame-

ter. Next, they sort candidate attributes for add/delete. Thresholds are set to mean

scores. Finally, the search starts with an order in relation with filter scores. The

search stops when the threshold condition is not satisfied. Indeed, the filter knowl-

edge is not only used to define the new neighborhood but also to define an order for

solutions exploration. Such consideration is recommended specifically when the LS

operator looks for a first improving solution.

IFLS+: Improved floating local search enhanced by pruning capabilities

The second scheme based on pruning capabilities is inspired from the IFLS operator.

As presented previously the improved floating search adds a new stage to the neigh-

borhood exploration to diversify the search. The last step defines a neighborhood

structure relying on attribute exchange mechanism. We propose for IFLS+ three

stages based on pruned neighborhood structures. The two first stages use SF+ and

SB+, whereas the last stage adopts the pruning rules of the AF+ operator. The

Algorithm 25 illustrates the new operator derived from the floating scheme. Remark

that the effective design of the basic operators make them reusable as pluggable

components according the adopted scheme.
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Figure 3.5: LS operators based on pruning
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Algorithm 22: Pruned Floating LS operator: FLS+

Input: S: Input Solution
Cla: Classifier for solution evaluation
F : Filter for attribute ranking
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S ; imp ← true
3 while (imp) do
4 S1 ← SF+(Sbest, Cla, F ) /*Algo. 23*/
5 if (S1 ≻ Sbest) then
6 Sbest ← S1

7 else
8 imp ← false

9 while (true) do
10 S2 ← SB+(Sbest, Cla, F ) /*Algo. 24*/
11 if (S2 ≻ Sbest) then
12 Sbest ← S2
13 imp ← true

14 else
15 Break

16 Return Sbest

Figure 3.5 illustrates local search operators proposed in this section as well as

their relation with previously presented LS operators and reference approaches.

Empirical results

Tables C.12, C.13 and C.14 (p. 184-186) detail results of the FLS+ and IFLS+

comparison to GA, whereas, Tables C.15, C.16, C.17 and C.18 (p. 187-190) compare

the same LS operators to MBEGA.

In comparison to GA the memetic schema based on the two local search operators

FLS+ and IFLS+ outperform GA in more than one criterion. From the evalua-

tion perspective the significant improvement is mainly related to the reduction of the
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Algorithm 23: Pruned Forward Search LS operator: SF+

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 UnSellist ← getUnSelectedAtt(S)
4 Threshold ← getMeanScores(UnSellist, F )
5 foreach (x ∈ UnSellist) do
6 if (Score(x, F ) < Threshold) then
7 continue

8 S1 ← S ∪ {x}
9 Evaluate(S1, Cla)

10 if (S1 ≻ Sbest) then
11 Sbest ← S1

12 Return Sbest

number of features. Whereas the classification error rates reported by fitness values

has been in most of cases outperformed by the reference approach with a slight gap.

Besides, with some benchmarks optimal fitness values 13 were obtained by reference

and proposed memetic schema (i.e. Ovarian, MLL and SRBCT dataset). Floating

schema, based on FLS+ and IFLS+, applied to Breast, Brain Tumor and MLL data

sets succeeded to improve their accuracies on four criteria (both validation classifiers,

CPU time and attribute number). Besides, at least one of the proposed floating

schema succeeds to improve its results (with statistical validation) on eight bench-

marks (almost half on the benchmarks). On the other hand, memetic floating schema,

based on FLS+ and IFLS+, struggle to gain the same effectiveness when they are

compared to the MBEGA approach. Mainly, both running time and intentionality

reduction confirm a relative improvement. With CNS benchmark, both proposed op-

erators improved the fitness, while with Prostate data set four criteria were improved

13Error rate of 0% for the fitness criterion
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Algorithm 24: Pruned Backward Search LS operator: SB+

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 Threshold ← getMeanScores(S, F )
4 foreach (x ∈ S) do
5 if (Score(x, F ) ≥ Threshold) then
6 continue

7 S1 ← S\{x}
8 Evaluate(S1, Cla)
9 if (S1 ≻ Sbest) then

10 Sbest ← S1

11 Return (Sbest)

by FLS+. In comparison to the previously proposed operators, based on pruning

techniques (AF+ and MB+), floating local search operators outperforms AF+ and

are at the same efficiency level of MB+.

Globally, the four proposed operators outperform GA but provide relatively com-

parable results to MBEGA. The main advantages of the pruning approaches are its

ability to reduce subset size and to provide some improvements on at least one val-

idation criterion. The major pitfalls of the pruning approaches, are its convergence

speed and the neighborhood exploration costs which are closely related. In fact, the

more the exploration is expensive, the more the evolutionary search is perturbed, less

effective and the trade-off between exploration and exploitation is broken. We should

also note that the operators based on schema, are more effective than the ones which

are not based on scheme AF+.
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Algorithm 25: Improved Floating LS operator with pruning: IFLS+

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S ; imp ← true
3 while (imp) do
4 S1 ← SF+(Sbest, Cla, F ) /*Algo. 23*/
5 if (S1 ≻ Sbest) then
6 Sbest ← S1

7 else
8 imp ← false

9 while (true) do
10 S2 ← SB+(Sbest, Cla, F ) /*Algo. 24*/
11 if (S2 ≻ Sbest) then
12 Sbest ← S2
13 imp ← true

14 else
15 S2 ← AF+(Sbest, Cla, F ) /*Algo. 19*/
16 if (S2 ≻ Sbest) then
17 Sbest ← S2
18 imp ← true

19 else
20 Break

21 Return Sbest
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Stochastic LS operators

This section is devoted to the adaptation alternatives of the LS neighborhood explo-

ration. In fact, the sequential exploration could be replaced by a stochastic selection

selection mechanism. The stochastic selection might provide a tool to reduce the

size of the neighborhood more effectively (in comparison to the pruning operators).

In fact, the stochastic mechanism endows exploration process with diversification is-

sues. In addition, the application of the LS operator could provide different enhanced

solutions each time the operator is called.

Stochastic MB operator: MB∗

The operator is derived from the MB scheme. The local search involves stochastic

components even for the last stage. The AF ∗ and BF ∗ operators replace pruning

behavior by stochastic ones. The exploration order suggested by filter scores are

replaced by stochastic selection mechanism which is not necessity obliged to explore

attributes to add or delete in a predefined order. The neighborhood could be limited

to a given number of solutions to explore. The LS operator is described by Algorithm

26. The last stage refers to AF ∗ and BF ∗. AF ∗ and BF ∗ are based on Add(.)/Del(.)

procedures of the MBEGA local search (see Algos. 11 and 13)14. In order to delimit

the neighborhood search space, threshold parameters are added to both AF ∗ and

BF ∗. Empirical study involves two variant of this operator. The first one explores

all neighborhood solutions (limited by the threshold parameters), while the second

stops after a first improvement.

Empirical results

Tables C.19, C.20, and C.21 (p. 191-193) detail evaluation and validation accura-

cies found by the application of memetic algorithms respectively endowed with two

variants of the MB∗ local search operator: the first explores the entire associated

neighborhood and the second returns the solution found after the first improvement.

14p. 67 and p. 69
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Algorithm 26: Fully Stochastic MB Operator: MB∗

Input:
S: Input Solution
F : Filter
Cla: a classifier for solution evaluation
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← MB(S) /* MBEGA LS operator*/
3 if (S ≻ Sbest) then
4 Sbest ← AF ∗(Sbest, Cla, F,Nh) /* Algo. 31 */

5 else
6 Sbest ← BF ∗(Sbest, Cla, F,Nh) /* Algo. 32*/

7 Return Sbest

Algorithm 27: Stochastic Forward LS operator: SF ∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 i ← 0
4 while (i < Nh) do
5 S1 ← S
6 Add(S1, F ) /*Algo. 11*/
7 Evaluate(S1, Cla)
8 if (S1 ≻ Sbest) then
9 Sbest ← S1

10 i + +

11 Return Sbest
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Algorithm 28: Stochastic Backward LS operator: SB∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 i ← 0
4 while (i < Nh) do
5 S1 ← S
6 Del(S1, F ) /*Algo. 13*/
7 Evaluate(S1, Cla)
8 if (S1 ≻ Sbest) then
9 Sbest ← S1

10 i + +

11 Return Sbest

According to evaluation criterion which is fitness value, both memetic schema pro-

vided close or equal results even for benchmarks with a fitness reaching 0%. In some

cases (i.e. Colon, 9 Tumors, and Challenge 2004) the fitness values of GA were

outperformed by memetic algorithms. The number of attributes was significantly

reduced as well as running times. For these two criteria the performances were im-

proved for all benchmarks with at least one of the two memetic variants. The results

of 9 benchmarks were improved on four criteria. When we compare the two variants,

the resulting performances are on the same level and sometimes the variant with first

improvement outperforms those which explore the neighborhood entirely. Globally,

the proposed stochastic MB schema outperforms GA.

The two stochastic variants of the MB scheme have been also compared to, the

MBEGA algorithm and results were reported in Tables C.22, C.23, and C.24 (p.

194-196). When comparing fitness values, MBEGA slightly outperforms the two

MB schema. Nevertheless, optimal solutions (according to the fitness criterion) were

found by both reference and proposed memetic schema. Our best solutions were
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more compact and include smaller subset sizes. In some other cases, the fitness

levels were close but the proposed memetic schema and LS operators succeeded to

smaller subsets. Both subset size and running time criteria confirm the superiority

of the stochastic MB schema. Six benchmarks results showed that the stochastic

MB variant outperforms MBEGA on four criteria, while 10 benchmarks confirm its

superiority on at least 3 criteria with one of the two variants.

Stochastic floating LS operator: FLS∗ and IFLS∗:

The proposed operators inherit the main steps of the floating scheme (forward and

backward search), with a slight change aiming to reduce the number of solutions to

explore. In fact, the search stops when forward search did not succeed to improve the

solution at hand. Indeed, backward stage is only applied when forward stage succeed

to add an attribute improving feature subset fitness. The search components are

fully stochastic and rely on basic Add(.)/Del(.) procedures. The exploration proce-

dures are guided by both stochastic selection and a threshold limiting the size of the

neighborhood. New forward and backward procedures are respectively illustrated by

algorithms 27 and 28. FLS∗ and IFLS∗ are two variants of the scheme are described

by Algorithms 29 and 30. IFLS∗ requires a stochastic attribute exchange operator

AF ∗ for the last stage. The stochastic version of AF is illustrated by Algorithm 31.

Empirical results

Tables C.25, C.26 and C.27 (p. 197-199) detail evaluation and validation perfor-

mances obtained by the application of memetic algorithms respectively endowed with

the FLS∗ and IFLS∗ local search operators. The reported results showed the su-

periority of the memetic alternatives based on FLS∗ and IFLS∗ in comparison to

GA on more than one criteria. According to the attributes number and running time

criteria, results were improved in almost all the cases. For the validation criteria, clas-

sification accuracies were improved on several benchmarks. Results of four criteria

were improved on seven benchmarks. Except two benchmarks, the proposed floating
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Algorithm 29: Stochastic Floating LS operator: FLS∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 while (true) do
4 S1 ← SF ∗(Sbest, Cla, F,Nh) /*Algo. 27 */
5 if (S1 ≻ Sbest) then
6 Sbest ← S1

7 else
8 Return Sbest

9 while (true) do
10 S2 ← SB∗(Sbest, Cla, F,Nh) /*Algo. 28 */
11 if (S2 ≻ Sbest) then
12 Sbest ← S2

13 else
14 Break

schema outperforms the GA on at least 3 criteria.

On the other hand, FLS∗ and IFLS∗ were compared to the MBEGA algorithm

and results were reported in Tables C.28, C.29 and C.30 (p. 200-202). Globally, pro-

posed floating search alternatives is less effective than MBEGA. Nevertheless, the gap

in results is not so important, and in numerous cases performances are comparable.

Only the results of three benchmarks confirm the superiority of stochastic floating

alternatives on four criteria.

In comparison, to both reference approaches, stochastic floating search operators

outperform GA and are close to MBEGA. Globally, among the proposed stochastic

operators, schema based on MB behave more accurately than those based on floating
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Algorithm 30: Stochastic alternative of the IFLS operator: IFLS∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 while (true) do
4 S1 ← SF ∗(Sbest, Cla, F,Nh) /*Algo. 27 */
5 if (S1 ≻ Sbest) then
6 Sbest ← S1

7 else
8 Return Sbest

9 while (true) do
10 S2 ← SB∗(Sbest, Cla, F,Nh) /*Algo. 28 */
11 if (S2 ≻ Sbest) then
12 Sbest ← S2

13 else
14 S2 ← AF ∗(Sbest, Cla, F,Nh) /*Algo. 31 */
15 if (S2 ≻ Sbest) then
16 Sbest ← S2

17 else
18 Break



3.4 Proposed Memetic Schema 107

scheme, although that the floating search operators are comparable to reference ap-

proaches and outperform them on several benchmarks and criteria. The comparison of

the stochastic operators to the operators based on neighborhood pruning showed that

stochastic alternatives are more effective than pruning ones. This could be explained

by the improvement on the neighborhood exploration.

Stochastic LS operator without scheme: AF ∗ and BF ∗

Stochastic Add(.)/Del(.) procedures (see Algos. 11 and 13) of the MBEGA LS could

be used to design LS operators independent of the previously presented schema.

Algorithms 31 and 32 implement Attribute flip and Bit flip operators in a stochastic

way with a limited neighborhood size. Two versions of the AF ∗ and BF ∗ operators

were deployed with memetic algorithms. For each LS operator a simple and iterative

version were tested. The four combinations were also compared to the previously

proposed stochastic LS operators. By this way, the scheme contribution would be

easy to assess.

Empirical results

Tables C.31, C.32 and C.33 (see p. 203-205) detail evaluation and validation accura-

cies of the best solution found by the application of memetic algorithms respectively

endowed with the AF ∗ and BF ∗ local search operators.

MAs based on AF ∗ and BF ∗ were, also compared to the MBEGA algorithm

and results were reported in Tables C.34, C.35 and C.36 (see p. 206-208). Globally

the MA based on both the AF ∗ and BF ∗ are more effective than the GA, however

it behaves less better than the MBEGA. In comparison to local search operators

based schema, the AF ∗ and BF ∗ are not well performing than operators based to

stochastic MB schema. This could be explained by the composite neighborhood

structure as well as stochastic components of the proposed operators. On the other

hand, stochastic LS operators without schema are more effective than pruning local

search alternatives. Iterative version of the local search operators the AF ∗ and MB∗
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Algorithm 31: Stochastic AF LS operator: AF ∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 i ← 0
4 while (i < Nh) do
5 S1 ← S
6 if (RandBoolean()) then
7 Add(S1, F )
8 Del(S1, F )

9 else
10 Del(S1, F )
11 Add(S1, F )

12 Evaluate(S1, Cla)
13 if (S1 ≻ Sbest) then
14 Sbest ← S1

15 i + +

16 Return Sbest
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Algorithm 32: Stochastic BF LS operator: BF ∗

Input: S: Input Solution
Cla: a classifier for solution evaluation
F : Filter for attribute ranking
Nh: Neighborhood size
Output:
Sbest: Best solution within neighborhood

1 begin
2 Sbest ← S
3 i ← 0
4 while (i < Nh) do
5 S1 ← S
6 if (RandBoolean()) then
7 Del(S1, F )

8 else
9 Add(S1, F )

10 Evaluate(S1, Cla)
11 if (S1 ≻ Sbest) then
12 Sbest ← S1

13 i + +

14 Return Sbest
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were also assessed and compared to the GA in Tables C.37, C.38 and C.39 (p. 209-

211), and to MBEGA in Tables C.40, C.41 and C.42 (p. 212-214). Reported results

showed a slight improvements over on iterative version of the same operators. They

are clearly more effective than GA, and the performances in comparison to MBEGA

are acceptable but the number of attributes was not reduced significantly.

3.4.4 Summary of experimental results

This section is devoted to the review of the performance of a set of memetic ap-

proaches involving the local search operators proposed in section 3.4.3. The assesse-

ment procedure is based on the five criteria used throughout the empirical study (i.e.

fitness, validation classifier1, validation classifier2) which involve metrics in relation

with evaluation as well as validation processes. The comparison takes into account

only improvements (compared to reference approach) statistically validated. In fact,

for each local search and criterion we count the number of times the improvement

has been validated. Besides, the memetic alternatives were also assessed on all the

benchmarks 15 used in this thesis, including small, medium and large benchmarks.

Table 3.7 summarises the local search operators (proposed in this section) as well as

their common properties 3.4.3.

LS-criteria
LS operators MB Floatting search Pruning Stochastic add/Del

AF+ •
MB+ • •
FLS+ • •
IFLS+ • •
MB∗ • •

MB∗(FI) • •
FLS∗ • •
IFLS∗ • •
AF ∗ •
BF ∗ •

Iter.AF ∗ •
Iter.BF ∗ •

Table 3.7: Local search operators classification

1523 benchmarks
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Figure 3.6: Proposed LS operators and its relation with reference approaches
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Figure 3.7: MA comparison to GA and MBEGA

Figure 3.7 graphically illustrates performance improvements compared to reference

approaches GA and MBEGA.

The big picture, shows the superiority of almost all proposed memetic alternatives

over GA. Some of these memetic approaches clearly outperform the MBEGA. How-

ever the gap is less important with MBEGA than GA. MA based on MB+ seems to

be the more effective memetic alternative and memetic algorithms based on a scheme

are respectively more effective than those belonging to the same family (i.e. pruning,

stochastic) without any schema (i.e. AF+ vs FLS+, MB∗ vs BF ∗, FLS∗ vs It.BF ∗).

Such result confirms the fact that composite neighborhood structure for local search

operators is very interesting. In fact, even local search requires diversification mech-

anisms. Besides, when we compare the pruning to stochastic LS operators, the first

seems to be more effective on more than one criterion.
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On the other hand, we summarize the experiments of the local search operators

proposed throughout this chapter, by only considering two criteria: fitness and the

number of selected attributes. In fact, each local search devised and endowed within

a memetic scheme is compared to a reference approach (GA or MBEGA). Operators

behaviors or tendencies are assessed according to their statistical validated results for

all benchmarks. The results provided by the following Table (see Fig. 3.8) illustrates

for each Ls operators the percentages of benchmarks for which the its better 16,

worse17 and have a comparable results18 with its respective reference approach. For

example, first row compares GA to an MA using FLS1 as local search. for the finess

criterion, 83% of the benchmarks confirms the superiority of GA and the remaining

17% provides comparable results, whereas MA suceeds to reduce selected attribute

numbers in 50% percent of the cases.

Globally with fitness criterion, better results are in favor of reference approaches.

In many cases, proposed apporaches provides results comparable to reference ap-

proaches (i.e. stochastic operators). However, when we look only to the results of the

second criterion (selected subset size) we can clearly see the superiority of almost all

the proposed operators. Now when we consider both criteria and we compare results,

we can depict that operators which succeed to provide comparable fitness, and at the

same time outperform reference approaches on the second criterion are necessarily

quite better and more interesting to investigate in depth. Such tendency covers al-

most the second part of the table (stochastic operators). Such result is particularly

interesting for large benchmarks when the fitness is close to optimal value (very low

classification error rate). We have previously shown that for many large benchmarks,

when the reference approach provides fitness equal to 0%, some of the LS operators

succeeds to provide same fitness with a reduced number of attributes.

The second part of the figure (see Fig. 3.8) graphically illustrates local search

operators results aggregated by family. It is evident that the four families confirm

the superiority of LS operators for subset size reduction. In addition, it is interesting

to see, with fitness criterion the evolution of portions of comparable results and those

16improvement over 10 runs (at least) is statistically validated
17superiority of reference approach over 10 runs (at least) is confirmed statistically
18statistical test is not in favor of any approach
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for which selected devised approaches are better. The third family seems to provide

the better compromise. Finally the comparison to the the third and the fourth family

shows that the use of a scheme which enlists neighborhood diversification participates,

in a part to enhance dimensionality reduction. Figure 3.6 illustrates local search

operators proposed in this section as well as their relation with previously presented

LS operators and reference approaches.

3.5 Conclusion

Throughout this chapter which was devoted to the memetic modeling we designed

and assessed a set of memetic approaches. The associated local search operators were

proposed according to the requirement of the problem of feature selection modeling.

A set of operators were adapted to high dimensional spaces. Some of them have

proven their efficiency in comparison to memetic reference approaches. The aim

was to develop evolutionary algorithms that are able to find good trade-offs between

exploration and intensification through hybridization schema. Although that some of

the LS operators provided comparable fitness results we succeed, in many cases, to

confirm the ability to reduce the number of selected attributes. We also succeed to

adapt and hybridize some heuristics for which the applications were limited to small

benchmarks. The next chapter focuses on another hybridization issue targeting the

effective combination of the wrapper-filters approaches using another optimization

paradigm.



Chapter 4

Effective Wrapper-Filter

Integration Through a GRASP

Modeling

4.1 Introduction

In this chapter, we propose, a new hybrid search technique through the adaptation

of GRASP approach to the FS problem. The devised approach investigates the effec-

tive wrapper-filter combination by exploiting the intrinsic properties of the GRASP

heuristic. The main motivations for this proposal are three folds: (i) filter-wrapper

collaboration might enhance the relevance of the selected feature subsets. Effective

combination may lead to a schema or a framework allowing the use of both approach

advantages (ii) local search approaches have shown their effectiveness in FS as well

with sequential deterministic procedures (i.e. SFFS [120], IFFS[101], etc) as with

stochastic approaches (i.e. memetic [34], Simulated Annealing [97] and Tabu search

[128]). (iii) endowing, respectively, filters and wrappers with stochastic diversification

and guidance mechanisms to alleviate FS, challenging problems like local minima and

nesting effect [54, 90].

The main contributions of this chapter are the investigation of the GRASP meta-

heuristics as a scheme for the FS modeling as well as the study of the behavioral
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aspects in relation with adaptation to high dimensional FS problems.

Section 2 formalizes and reviews the optimization paradigm behind the GRASP

and gives an overview of representative components, associated approaches, and ap-

plications. Section 3 details the proposed GRASP-FS apporaches and compares it

to a reference approach. Section 4 is devoted to the adaptation of the GRASP-FS

approaches to the high dimensional problems, since the local search is considered as a

main component of the investigated metaheuristic. We study some of the behavioral

aspects in relation to the adequation of the construction phase to the local search

operators. Finally, Section 5 concludes the chapter and provides some directions of

future research in relation to GRASP modeling.

4.2 GRASPMetaheuristic Comprehensive Overview

This section introduces GRASP heuristic principles, details components and sheds

some lights on featured enhancements and variants. Next, we survey recent applica-

tion of GRASP to the FS problems as well as the study and the discussion of the FS

modeling challenges with GRASP.

4.2.1 The metaheuristic big picture

The Greedy Randomized Adaptive Search Procedure (GRASP) is meta-heuristic for

combinatorial optimization problems [37, 38]. It was initially proposed as a prob-

abilistic heuristic for the set covering problem [36]. Usually, known as multi-start

procedure, GRASP is based on an iterative process which constructs a solution then

fine-tune it, through the exploration of its neighboring solutions.

Algorithm 33 illustrates the basic steps of the GRASP. The iterative process is

made up of (i) a construction phase, where a feasible solution is greedily built (i.e.

incrementally), (ii) next, a local search phase starts at the constructed solution and

iteratively updates the solution until a locally optimal solution is found. The best

overall solution is kept as result.
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Algorithm 33: GRASP: basic steps

Input:
Specific problem parameters
Output:
Sbest: Best solution

1 begin
2 Solution S ← ∅
3 Sbest ← S
4 ReadInputs();
5 while (Stopping condition not met) do
6 S ← GreedyRandomizedSolutionConstruction()
7 S ← LocalSearch(S)
8 UpdateSolution(S, Sbest)

9 Return (Sbest)

The multi-start property enlarges the search coverage by exploring different re-

gions of the search space without being influenced by the previous solutions found.

The GRASP heuristic is endowed with both global search mechanisms (multi-start

scheme and the stochastic construction stage) allowing diversity during the search

and intensification mechanisms implemented by the local search operators.

GRASP was successfully applied to numerous problems ranging from fundamental

and classical optimization problems (i.e. routing [20], timetabling [55] and scheduling

[6]), to industrial applications (transportation [10], telecommunications [47], manu-

facturing [18]).

Readers can refer to [38], for a recent GRASP survey and to [39] for annotated

literature bibliography.

4.2.2 GRASP components

This section examines, in depth, components of the GRASP optimization scheme

[37] as well as its main features and behavioral aspects. GRASP involves an iterative

process which consists of two stages: the construction of a feasible solution and the

local search. The two next paragraphs detail construction mechanisms and investigate

refinement principles.
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Construction Stage

The aim of this stage is to build a solution S from a set of candidate C elements.

Solutions are iteratively constructed, starting from an empty set. Elements are in-

crementally added to the solution (i.e. one element at each iteration). A greedy

function g(.) could be used to measure the benefit of the selection of an element (or

the cost induced by the add of an element to a solution, in the case of a minimization

problem). Such a greedy mechanism used as a GRASP construction stage might pro-

vide the same solution for the local search procedure. In other words, a deterministic

greedy function would generate always the same initial solution for the second stage.

One can think of a construction stage based on a totally random generation process.

Too much randomness would transform the GRASP in an iterative LS procedure.

Besides, random solutions would require higher intensification effort (second stage)

in comparison to solutions greedily generated. Consequently the convergence is rela-

tively slower. A trade-off between diversity level and solution generation greediness

should be guaranteed to allow effective construction stage design.

A non deterministic procedure is used by GRASP to select elements among best

candidates. Hence, solution elements are selected from a Restricted Candidate List

(RCL), and the greedy random construction mechanism is implemented according to

one of these two alternatives [111]:

• either, by using greediness to generate RCL and randomness to select elements

from it,

• or, by using randomness to build RCL and greediness for selection.

An example of a construction mechanism, for a minimization problem based on

greediness and randomness is illustrated by algorithm 34 [38]. A threshold α is used

to define the restricted list (Line 8). Once an element is added to the solution S, both

candidate list C and RCL are updated.
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Algorithm 34: Construction of a Greedy Randomized Solution (minimization
problem)

Input:
α: Threshold
Output:
S: Feasible solution

1 begin
2 S ← ∅
3 Initialize the candidate set C by all elements
4 foreach (i ∈ C) do
5 Evaluate the incremental cost g(i)

6 while (|C| > 0) do
7 gmin ← mini∈Cg(i); gmax ← maxi∈Cg(i);
8 RCL ← {i ∈ C | g(i) ≤ gmin + α(gmax − gmin)}
9 v ← SelectElement(RCL) /*v is removed from RCL */

10 S ← S ∪ {v}
11 Update(C)
12 foreach (i ∈ C) do
13 Evaluate the incremental cost g(i)

14 Return (S)

Refinement Stage

The first stage resulting solution will be used as initial solution for LS refinement,

its neighborhood is investigated until a local minimum is found. The best overall

solution is kept as result.

Throughout the second stage solutions are iteratively refined by local search pro-

cedures. It could be made of a unique or multiple local search operators. The in-

tensification mechanism could also rely on a composite neighborhood exploration to

escape solutions locally optimal. We recall the main steps of the iterative local search

(LS) procedure is with Algorithm 35.

The multi-start property of GRASP allows the search process to be not trapped

in a local optimum and to explore different regions of the search space, without being

constrained or influenced by the best solution found.
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Algorithm 35: Pseudo-code of a L.S. Algorithm

Input:
S: Solution
Output: Sbest: Improved Solution

1 begin
2 s ← S ; Sbest ← s
3 repeat
4 NHs ← GenerateNeighborhood(s)
5 foreach si ∈ NHs do
6 if (pivot condition satisfied ∧ si > Sbest) then
7 Sbest ← si

8 s ← Sbest

9 until depth condition satisfied;
10 Return Sbest

4.2.3 GRASP Variants

In this section, we survey some featured approaches derived from the basic GRASP

as well as successful components enhancements. In fact, GRASP lacks of learning

mechanisms since it not use the history of solutions found in the previous iterations.

Such memory can be used to avoid redundant neighborhood exploration. For ex-

ample, a hash table was suggested to save the solutions of the construction phase.

Consequently, only new solutions that were not present on the hash table were added

to it, and were considered on the GRASP second stage.

In Reactive GRASP [108], The RCL parameter α (see Algo. 34) was adjusted

according to the evolution of the process. In fact, a learning mechanism was imple-

mented in the constructed phase. The single value of the α parameter was replaced

by a set of a discrete possible values. A probability was associated to each αi value.

Throughout iterations, αi is being selected according to its associated probability.

Probabilities are updated, in a manner, to favor values that have led to better solu-

tion in the previous iterations. Another, intensification procedure based on the best

explored solutions was proposed by path-relinking mechanism. Path-relinking was

originally proposed by Glover [45] as a strategy connecting elite solutions obtained
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by Tabu and Scatter search. The idea is based on the exploration of solutions leading

from one locally optimal solution to the another one(s) obtained on the previous iter-

ations. The new solutions connecting two elite solutions forms a path. According to

[38] and [111], such mechanism leads to significant enhancement in solution quality.

For two elite solutions e1 and e2, different paths generation alternatives (connecting

e1 to e2) were proposed (i.e. forward relinking, backward relinking, mixed relinking,

etc) [111]. It was applied to locally optimal solutions provided by the GRASP local

search stage. The first use of path relinking mechanism as GRASP components was

in 1999 [80]. Since then, several enhancements and hybridization alternatives were

devised. Two main strategies were adopted: (i) path-relinking was applied at the end

of each GRASP iteration between current locally optimal solution and best solution

found; (ii) or, it was applied to all elite solutions pairs either periodically or at the

end of the GRASP process [111].

In addition to Reactive-GRASP alternatives and path-relinking intensification pro-

cedures, the GRASP scheme was also combined with other optimization paradigms

(i.e. GA, Tabu, VNS, etc) [111]. For example, it was combined with Tabu search in

[26] where the second stage was replaced by the Tabu heuristic.

4.2.4 GRASP for FS

The first application of GRASP to the FS problem was, recently proposed by Yusta

in [133]. The proposed GRASP was compared to effective FS search techniques like

GA, Tabu search and floating search (SFFS).

The GRASP proposed in [133], is illustrated by Algorithm 36. The algorithm

is based on two main stages, namely solution construction (Lines 6-21) and local

search procedure. The first stage constructs nmax solutions, and the best one will

be selected as a candidate for the second stage. Solutions are constructed according

to the attributes selected within the RCL list. The RCL is based on the In-Group

Variability criterion (see eq. 4.1).

IGV (fj , C) =
∑

i

(f i
j − µC(i))

2 (4.1)
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Where f j
i and µC(i) denote respectively the i-th value of the attribute fj and the mean

µC(i) of fj values for the instances (data sets rows) belonging to the same class as the

instance i. Besides, the attribute selection, is controlled by the parameter α (Lines

11-17). In fact, it controls the degree of randomness of the procedure.

The second stage iteratively applies AF operator to the solution provided by

the first stage1.Each iteration generates the neighborhood of the current solution and

exchanges current solution with best neighbor if it can improve classification accuracy

(solution fitness). The neighborhood structure proposed, by Yusta in [133], is based

on attribute replacement. The local search procedure iteratively applies AF operator.

(see eq. 3.1 p. 64)

Reported experiment results have shown the superiority of GRASP in comparison

to GA and meta-heuristics based on the same LS operator (GA, Tabu).

4.2.5 GRASP modeling challenges

Since the GRASP metaheuristic is based on two main stages, several aspects should

be taken into consideration for each stage to the adapt them to the requirements and

the specificities of the FS modeling.

From one hand the construction stage could be designed more effectively using

incremental wrappers or filter scores. The local search operators could be replaced

by more enhanced local search operator like those used in the previous chapter. Fur-

thermore, the GRASP second stage proposed in [133] could be only applied to small

dimensional spaces.

The neighborhood structure NH(S), of [133], considers all combinations of at-

tribute exchange. Consequently, LS is sensitive to the number of selected features.

The neighborhood exploration becomes prohibitive even for moderate value of n. The

computational complexity is in the order of Θ(p ∗m) 2 (for a non iterative LS).

On the other hand, the GRASP should guarantee or preserve a kind of trade-

off between search diversification and intensification capabilities. In other words, a

GRASP scheme based on a LS operator requiring intensive neighborhood exploration

1LS is repeated until a locally optimal solution is found
2p and m respectively denote the number of selected and non-selected features (p + m = n).
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Algorithm 36: The G.R.A.S.P. proposed in [133]

Input:
F : Initial Feature set
C: Target class Attribute
α: Threshold
d: number of attributes to select
nmax: number of solutions to generate
Output:
Sbest: Selected Features

1 begin
2 S ← ∅
3 Sbest ← S
4 while (Stopping Criterion not Satisfied) do
5 //Construction stage
6 foreach (fi ∈ F ) do
7 gi ← IGV (fi, C)

8 Sollist ← ∅
9 repeat

10 S ← ∅
11 repeat
12 min ← argmini(gi), max ← argmaxi(gi)
13 RCLlist = {vj | gj ≤ α.gmax + (1− α)gmin}
14 Randomly select vj ∈ {vj ∈ RCLlist, vj /∈ S}
15 S ← S ∪ {vj}
16 RCL ← RCL \ {vj}

17 until (|S| = d);
18 Evaluate(S, Cla)
19 Sollist ← {S} ∪ Sollist
20 until (|Sollist| = nmax);
21 S ← getBest(Sollist)
22 // iterative local search
23 S ← LocalSearch(S) /*AF Operator */
24 if (S ≻ Sbest) then
25 Sbest ← S

26 Return (Sbest)
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may result in a behavior comparable to a hill climbing or one GRASP iteration,

particularly when the process is bounded a number of evaluations. GRASP modeling

challenges as well as metaheuristic design requirements can be summarized as follows:

• effective neighborhood investigation3,

• Construction stage providing acceptable diversification level,

• Guidance mechanism for the construction stage.

4.3 An effective GRASP scheme for FS: GRASP-

FS

In this section, we investigate, the proposed new GRASP schema for FS. We focus on

a set of a devised local search operators 4 and filters in the aim to adapt and deploy

them as components within GRASP schema.

Since the GRASP scheme is based on a restricted list of candidates, this list could

be represented by features that seem to be, individually, relevant or those that might

provide incremental usefulness to the selected feature subset. For the GRASP con-

struction stage we opt for selection scheme capable of generating attribute ranking.

Hence, features scores will serve as selection criterion for the RCL generation. The

construction stage generates solutions from the RCL using a random selection mech-

anism. The second stage of GRASP enhances solutions by an iterative neighborhood

exploration. The quality of solution fine-tuning, mainly, depends on the nature of the

involved neighborhood structure of the LS operators.

We devise a number of LS procedures based on different neighborhood structures

inspired from well known sequential search procedures. The following two sections,

detail different design alternatives for both RCL and local search GRASP components.

3Not necessarily intensive exploration
4effective operators of the previous chapter
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4.3.1 Construction stage: RCL generation

Comparatively to the GRASP approach proposed by Yusta in [133], construction

phase steps (see Algo. 37) are based on the selection of the best solution among nmax

ones generated. Each solution randomly selects candidates from an RCL which is

made up of attributes of acceptable filter scores.

Any filter criterion could be, instead, used to build RCL. In this chapter, we opt

for four well known and different selection metrics: χ2, ReliefF [112], Symmetrical

Uncertainty (SU) [54], and FCBF [130].

Typically, filters return solutions based on the selection of features with the highest

scores. A threshold is used (th) to define the score level allowing attributes to be

selected within RCL (Algo 37 Line 4-6). Once the initial RCL is generated5, the

variables are randomly selected to build GRASP first stage solutions. Such a selection

scheme has, at least, three benefits: (i) reducing the risk of selection of, only, highly

correlated relevant features; (ii) the combination of features with moderate usefulness,

which are not highly relevant to the target, might promote interaction among selected

attributes; (iii) in comparison to the construction stage of the GRASP of [133], the

parameter α which was used to define selection randomness is replaced by a stochastic

mechanism in direct relation with specific problem knowledge implemented by random

selection of attributes with scores above a given threshold.

Besides, the construction mechanism is bounded by a parameter nmax to limit

the evaluation cost. Such limitation is less sensitive to the number of the data set

attributes, in comparison to greedy construction mechanisms and particularly incre-

mental wrappers and sequential search procedures. The RCL list is rebuilt in [133], in

each iteration, according to the condition of line 13 of Algorithm 36, whereas in our

approach it’s constructed once then attributes are randomly selected. The update or

rebuild computational cost is reduced in comparison to the reference approach.

5using filter criterion
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Algorithm 37: Construction stage

Input:
th: Threshold
F : Filter
A: Attribute list
nmax: Iterations number
Cla: Classifier
Output:
Sbest : Feasible solution

1 begin
2 /* building RCL*/
3 RCL ← ∅
4 foreach (d ∈ A) do
5 if (F.score(d) ≥ th) then
6 RCL ← RCL ∪ {d}

7 /* Solution generation*/
8 i ← 0
9 while (i < nmax) do

10 /*Random(n) generates a random int value in [0..n− 1]*/
11 n ← min(Random(RCL.size()) + 1, A.size()/2)
12 /*Selects randomly n distinct elements from RCL*/
13 S ← RandomSelection(RCL, n)
14 Evaluate(S, Cla)
15 if (S ≻ Sbest) then
16 Sbest ← S

17 i + +

18 Return (Sbest)
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4.3.2 Local search procedures

The local search (LS) is applied at the second stage of the GRASP. It aims at the im-

provement of the solution provided by the GRASP first stage process. An interesting

aspect that could motivate the wrapper choice as component of the GRASP second

stage, is the successful application of local search methods in FS modeling (i.e. Tabu

search, Simulated annealing, Memetic approaches) [54].

In this chapter, we devise a GRASP model based on various LS operators. Such

choice could be argued by the fact that the reference approaches were applied to

small benchmarks and the provided operators had complexities comparable to AF

local search.

The following Table (Table 4.1) details the neighborhood structures that will be

deployed within the local search procedures (second GRASP stage). For the first

part of this chapter we opt for four local search operators which include basic and

composite local search operators (used with memetic schema)6.

Local search Operator Reference Description
Attribute Flip AF eq. 3.9 Replaces selected attribute

by a non selected one (best
of all combination pairs)

Bit Flip BF eq. 3.6 Attribute state inverted
(one at a time)

Floating Search FLS1 Algo. 15 Composite operator: for-
ward and backward search.

Floating Search
With iterative
back track

FLS2 Algo. 16 FLS1 + possible iterative
backward search

Table 4.1: Local search operators applied to GRASP

6The remaining local search operators will be assessed with high dimensional data sets
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4.3.3 Empirical results

In this section, we empirically assess the behavior of proposed GRASP-FS schema

as well as a selection of the devised components. They will be, also, compared to

the baseline GRASP 〈IGV,AF 〉 proposed by Yusta in [133], where reported results

have confirmed the superiority of GRASP in comparison to Tabu search, Genetic and

Memetic algorithms, and SFFS heuristic.

Five benchmark datasets were used to assess GRASP-FS instances: Sonar, Iono-

sphere, SpamBase, Audiology and Arrhythmia with respectively 60, 34, 57, 69 and

279 attributes.7

Since reference approach was based on the selection of a fixed number of attributes

defined by the parameter d (see Algo. 36), we opt for an extended version of the

algorithm which randomly generated the number of attributes to select. With such

modification it becomes comparable to our GRASP-FS which is not limited by the

attribute number constraint. Reported results, correspond to the average values of at

least 50 trial runs. Means, Standard deviation and statistical test validation (t-Test

with confidence level of 97.5%) are also provided.

Three analyses are provided. The first one focuses on the assessement of the

components of the construction stage, whereas the second compares effectiveness of

local search apporaches. Finally, the third one compares the reference approaches to

instances of well performing GRASP-FS components on both stages.

Construction Phase

The first part of the empirical study is devoted to the assessment, of the behaviors of

the baseline GRASP with the devised GRASP-FS scheme which is based on Filters

to both built RCL and construct solutions. We keep the same LS operators for all the

experiments. The aim, here, is to be able to compare the construction mechanisms.

Table 4.2 provides results for each data set. Globally, according to the gain compared

to the reference approach. (last table column) obtained with a GRASP-FS instances

which generate the RCL with filters, the baseline method is outperformed in most of

7Datasets from by the UCI repository [16]
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the cases.

In addition, the improvement obtained with fitness values is confirmed with vali-

dation criteria (independent data, and different classifiers for validation). The overall

improvement, points out the reliability of the construction stage, particularly the

filters enlisted in the selection of suitable features. Surprisingly, Relief scores used

in the RCL build, seems to be the less relevant filter used in the first stage. On the

other hand, GRASP alternatives based on FCBF confirm superiority over the remain-

ing filters. We should also note that the mean running time is kept comparable for

both reference and proposed apporaches. In some cases, the GRASP-FS succeeded

to reduce running time.

Data Model Fitness (%) Validation Error (%) CPU Time(s) Gain % [133]
RCL LS ANN NB

Sonar IGV AF 15,89(1,71) 32,83(3,40) 40,30(3,01) 14183,88(7196)
Relief AF 14,29(1,88)+ 31,31(3,66)+ 39,85(2,71)+ 14915,13(7493) 10,07%
SU AF 12,79(1,13)+ 30,54(3,06)+ 39,53(2,51)+ 15867(8524) 19,51%
FCBF AF 13,46(0,00)+ 31,32(1,30)+ 37,27(1,70)+ 14920(7450) 15,29%

Audiology IGV AF 49,12(1,96) 52,4(3,14) 54,05(0,15) 343915(280683)
Relief AF 46,74(3,92)+ 51,54(4,47)+ 54,09(0,22) 337756(248912)− 4,85%
SU AF 33,36(3,2)+ 40,52(4,55)+ 54,16(0,25) 350761(267582) 32,08%
FCBF AF 36,08(4,72)+ 40,53(6,91)+ 54,06(0,14) 338687(258913) 26,55%

Arrhythmia IGV AF 39,72(1,57) 41,98(2,04) 43,61(1,65) 183959(132900)
Relief AF 40,17(1,76) 42,7(2,05) 44,22(1,74) 170925(114978)+ -1,13%
SU AF 36,15(1,89)+ 39,73(2,42)+ 44,56(1,79) 173505(115749)+ 8,99%
FCBF AF 33,82(1,26)+ 39,33(2,11)+ 43,54(1,76)+ 176065(117012) 14,85%

Ionosphere IGV AF 5,63(0,91) 16,34(1,98) 17,9(2,13) 22316(12626)
Relief AF 5,95(1,00) 15,51(2,26) 16,97(2,04)+ 21855(12081) -5,68%
SU AF 5,76(0,98) 15,21(2,48)+ 17,31(2)+ 24031(14531) -2,31%
FCBF AF 3,51(0,32)+ 16,33(0,92)− 15,73(0,89) 21973(11873)+ 37,66%

SpamBase IGV AF 16,47(1,04) 19,91(1,50) 20,23(1,57) 347062(190196)
Relief AF 16,43(1,05)− 19,59(2,19)+ 19,58(1,72)+ 338671(185750)+ 0,24%
SU AF 14,18(1,12)+ 15,89(1,66)+ 17,13(2,27)+ 311037(156931) 20,77%
FCBF AF 13,05(0,84)+ 15,96(2,18)+ 15,31(1,88)+ 331498(181414) 20,97%

8result format: [m(sd)+/−]; m: Mean; sd: Standard deviation;(+/−): T-test validity

Table 4.2: GRASP with RCL based on filters

Local search enhancement

The local search of the baseline method uses Attribute Flip operators whereas the

proposed GRASP-FS uses local search procedures inspired from heuristics success-

fully applied to the FS problem. In fact, four components could be deployed on the
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GRASP-FS second stage: AF, BF, FLS and FLS with iterative backtrack. The de-

vised local search procedures are deployed within new GRASP instances using the

IGV criterion on the First stage. Table 4.3 compares and evaluates the four GRASP

instances. Even though, the solutions provided by the first GRASP stage are based on

IGV criterion, numerous devised local search procedures have succeed to outperform

the baseline algorithm. In comparison to the results obtained by the previous empir-

ical analysis, the enhancement on the second stage is more significant than impact of

changes of the first stage.

Furthermore, local search alternatives adopting floating search, have empirically

confirmed their superiority over Yusta GRASP. On the other hand, the neighbor-

hood structure based on the selection or removal of one attribute (NHBF ) is the

less effective fine tuning scheme. The same result was confirmed with memetic al-

gorithms. The overall improvement could be explained by the enhancement of the

neighborhood structure design, since the initial solutions are provided by the same

construction mechanism.

The adapted new GRASP-FS scheme instances have empirically shown that en-

hancements could be afforded by filters in first stage as well as wrappers in second

stage.

Both stage improvements

Both of the previous sections studied the enhancement of the proposed procedures,

separately, in each stage. This section assesses the GRASP-FS global behavior when

we rely on the successfully used components: the construction stage based on attribute

filter ranking as selection criterion, and the composite neighborhood local search

operators, for the second stage. Table 4.4 compares two instances of the GRASP-FS

to the reference approach proposed in [133].

It is not surprising to remark the significant improvement of the GRASP-FS over

the reference approach. Both fitness and validation criteria results were enhanced in

most of cases. In opposition to the results provided by the two previous tables, there is

no negative gain. The gain (fitness criterion) is ranging from 15, 03% to 63, 89%. The

improvement of classification accuracies, was not followed by a significant increase
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Data Model Fitness (%) Validation Error (%) CPU Time(s) Gain %
RCL LS ANN NB [133]

Sonar IGV AF 15,89(1,71) 32,83(3,40) 40,30 (3,01) 14183(7196)
IGV BF 28,68(1,58) 33,59(4,90) 41,22(4,19) 15215(7922) -80,49%
IGV FLS1 5,92(2,05)+ 31,14(3,47)+ 40,05(3,08)+ 14481(6652) 62,74%
IGV FLS2 6,6(1,9)+ 31,26(3,38)+ 38,75(3,62)+ 12208(5244)+ 58,46%

Audiology IGV AF 49,12(1,96) 52,4(3,14) 54,05(0,15) 343915(280683)
IGV BF 68,78(1,34) 69,59(2,87) 72,64(2,4) 322789(248574)+ -40,02%
IGV FLS1 29,41(1,47)+ 41,78(3,96)+ 54,09(0,22) 234579(98248)+ 40,13%
IGV FLS2 30,99(1,21)+ 41,12(2,81)+ 54,08(0,17) 209670(111471)+ 36,91%

Arrhythmia IGV AF 39,72(1,57) 41,98(2,04) 43,61(1,65) 183959(132900)
IGV BF 49,47(1,02) 44,8(1,98) 46,34(1,59) 160659(96674)+ -24,55%
IGV FLS1 25,38(2,57)+ 38,27(2,9)+ 43,41(1,81)+ 156343(73463)+ 36,10%
IGV FLS2 24,42(2,67)+ 36,64(2,99)+ 42,64(1,71)+ 152719(89546)+ 38,52%

Ionosphere IGV AF 5,63(0,91) 16,34(1,98) 17,9(2,13) 22316(12626)
IGV BF 12,63(0,67) 15,78(3,01)+ 17,38(2,03)+ 21374(11603)− -124,33%
IGV FLS1 2,27(0,52)+ 14,77(1,64)+ 17,35(1,2)+ 18561(8464)+ 59,68%
IGV FLS2 2,48(0,56)+ 15,42(1,44)+ 17,66(1,03)+ 16035(6597)+ 55,95%

SpamBase IGV AF 16,47(1,04) 19,91(1,50) 20,23(1,57) 347062(190196)
IGV BF 23,72(1,1) 22,38(3,46) 21,59(2,43) 328341(17611) -44,02%
IGV FLS1 6,85(0,73)+ 12,28(1,27)+ 14,90(2,66)+ 532610(281813) 58,41%
IGV FLS2 6,87(0,84)+ 12,05(1,26)+ 15,11(2,75)+ 496728(206866) 58,29%

9result format: [m(sd)+/−]; m: Mean; sd: Standard deviation;(+/−): T-test validity

Table 4.3: GRASP with different local search procedures

on the mean number of selected attributes. In most of the cases the GRASP-FS has

preserved the same level of dimensionality reduction.

4.4 GRASP-FS and high dimensional spaces

The second study is devoted to the investigation of the behavior of the GRASP-

FS when it tackles high dimensional problems. We recall that, to the best of our

knowledge, the few first GRASP attempts [32, 133], in feature selection modeling,

have limited their the experimental study to benchmarks of small and medium size.

This section studies the behaviors of some of adapted LS operators 10, within the

GRASP scheme. At the same time, we assess the effectiveness of the component

of the construction stage, and how they behave with the new operators and the

tremendous search space nature. Detailed results of this section are provided by

10see section 3.4.3 p. 86
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Data Model Fitness(%) Validation Error(%) CPU (ms) Gain % [133]
RCL LS ANN NB

Sonar IGV AF 15,84(1,81) 32,72(3,30) 40,28(2,91) 15378(7798)
FCBF FLS1 13,46(0)+ 31,36(1,18)+ 37,4(1,68)+ 11820(4720)+ 15,03%
SU FLS2 5,72(1,26)+ 29,07(3,43)+ 40,25(2,48) 14295(7014)+ 63,89%

Audiology IGV AF 49,10(1,94) 52,41(3,22) 54,04(0,14) 334229(256748)
FCBF FLS1 28,54(1,22)+ 44,27(3,15)+ 54,09(0,25) 231281(115434)+ 41,87%
SU FLS2 28,17(0,6)+ 46,42(2,79)+ 54,1(0,21) 245239(140910)+ 42,63%

Arrhythmia IGV AF 39,62(1,56) 41,81(1,96) 43,53(1,6) 180487(117167)
FCBF FLS1 23,61(1,8)+ 37,23(2,84)+ 43,03(1,62)+ 164488(74931)+

SU FLS2 24,41(2,43)+ 37,35(2,69)+ 43,15(2,04)+ 163011(81754)+ 38,39%
Ionosphere IGV AF 5,67(0,95) 16,18(2,06) 17,90(2,06) 22968(12636)

FCBF FLS1 2,29(0,20)+ 15,6(0,64)+ 17,57(0,81)+ 17743(8624)+ 59,61%
SU FLS2 2,5(0,55)+ 15,46(1,55)+ 17,66(1,18)+ 16927(7417)+ 55,91%

SpamBase IGV AF 16,46(1,06) 19,81(1,52) 20,18(1,54) 358741(186075)
FCBF FLS1 6,6(0,41)+ 11,93(1,16)+ 13,33(2,23)+ 548332(283068) 59,90%
SU FLS2 7,10(0,79)+ 12,51(1,53)+ 15,32(2,81)+ 548493(286901) 56,87%

Table 4.4: Basic Grasp vs enhanced variants

associated chapter Annex IV (p. 237-239)

4.4.1 Behaviors of the construction mechanisms

In one of the previous experimental studies, we have seen that the construction mech-

anism based on the IGV was less effective than those based on filters. In this section

we try to shed some light on the relation between the construction mechanisms and

the different local search operators. In this preliminary analysis, we compare for each

local search operator the behavior and results of IGV 11 in comparison to both con-

struction mechanisms based on filters. Figures 4.1 and 4.2 respectively illustrate, for

both validation and evaluation criteria, the number of times where the GRASP-FS in-

stances based on the Relief (respectively SU) succeeded to outperform IGV on a set of

16 high dimensional benchmarks 12. Reported results were only limited to results, for

which a statistical test was validated. Figure 4.1, shows that both LS operators MB∗

and FLS∗ are more effective with construction stage based on RELIEF. On the other

hand, GRASP-FS instances based on MB+ are less sensitive to the construction stage

mechanisms. The same conclusions could be drawn for the comparison between IGV

and SU based construction mechanisms. In fact, operators MB∗ and FLS∗ behave

11GRASP-FS instances based on the IGV construction mechanism
12attributes number is ranging from 2000 to 26000
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more accurately with filter based construction processes than those based on IGV. In

addition, MB+ is, relatively, less sensitive to the usage of a particular construction

mechanism. For the remaining LS operators used within GRASP instances we can

remark any relative sensitivity to construction mechanisms.

Figure 4.1: Construction stage assessment: IGV vs Relief

4.4.2 Local search analysis

In this section, we mainly focus on the behaviors as well as the impact of the LS

procedures on the best solutions found. For each data set, we compare accuracy levels

of the GRASP −FS instances by varying the LS operator. The best solution fitness

was used as comparison criterion. Figures 4.3 and 4.4 graphically compare different

instances of the GRASP-FS. Mainly, three tendencies could be identified. The first

one concerns data sets, where almost the same results were obtained. Benchmarks

like Leukemia3C, Challenge2004 and 14 Tumors provided the same results and the

LS operators behaved on the same way with each construction mechanism. For such

data sets, the GRASP instances are insensitive to LS components.

The second tendency regards data sets and LS operators providing the lowest
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Figure 4.2: Construction stage assessment: IGV vs SU

classification error rate 13. GRASP-FS instances applied to the CNS, MLL and

ProstateTumor data sets provide feature subsets allowing perfect classification with

different local search operators. We note that comparable results were obtained with

memetic algorithms. The third tendency is in relation with benchmarks covered by

the two previous tendencies. In fact, IFLS+ the local search was always less effective

than the remaining ones. Such operator is not recommended as a component of the

GRASP second stage. The same consequence could be drawn for some data sets with

the FLS∗ operator.

When we compare, for each local search operator, the construction mechanism of

instances that succeeded to reach the best performances, we can clearly remark the

superiority of GRASP-FS instances endowed with construction mechanism based on

SU.

As concluding remark, the luck of sensitivity to LS with some GRASP instances

could be explained, partly by, the nature of solution provided by the construction

stage.

13evaluation stage
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4.4.3 Summary of empirical analysis

We summarize the GRASP experiments, by considering the following two criteria:

fitness and the number of selected attributes. The particularity of these comparisons

is that we compare our proposed approaches, because to the best of our knowledge

there was not a GRASP applied or adapted to high dimensional FS benchmarks.

In fact, GRASP instances will be compared by varying either construction or Local

search processes. Resulting behaviors or tendencies are assessed according to their

statistical validated results for all benchmarks. The following Table (see Table 4.5)

illustrates for each GRASP instance the percentages of benchmarks for which the its

better 14, worse and have a comparable results15.

Globally results of fitness criterion are in most of the cases comparable , and not

in favor of one of favor of one of the GRASP instances. In some cases, approaches

based on floating local search operators (i.e. IFLS+ and FSL∗) provides better

fitness results with inferior results on the number of selected attributes criterion.

On the other hand, when we look to the results of the second criterion (selected

subset size) we can clearly see the superiority of almost all the GRASP schema based

on IGV for the construction stage.

4.5 Conclusion

In this chapter, we investigate the GRASP metaheuristic. The approach has a num-

ber of attractive features that have allowed us to design a hybrid model combining

Wrapper and filters as GRASP components. The second part of the chapter was

devoted to exploration of high dimensional spaces and the study of the deployment

a set of adapted LS operators. Reported results confirmed the successful application

of the GRASP-FS. As perspective, The GRASP search capabilities could be endowed

with path relinking intensification mechanism and the impact on global search process

behaviors could be studied. Besides, the first GRASP stage could be diversified with

14improvement over 10 runs (at least) is statistically validated
15statistical test is not in favor of any GRASP instance
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Compared Approaches Validated improvement % (fitness) Validated improvement % (att)
A B A B Comparable A B Comparable

< IGV ;MB > < Relief ;MB > 0,00% 37,50% 62,50% 75,00% 6,25% 18,75%
< IGV ;MB > < SU ;MB > 0,00% 37,50% 62,50% 81,25% 0,00% 18,75%
< IGV ;MB+ > < Relief ;MB+ > 25,00% 25,00% 50,00% 68,75% 0,00% 31,25%
< IGV ;MB+ > < SU ;MB+ > 31,25% 18,75% 50,00% 81,25% 6,25% 12,50%
< IGV ; IFLS+ > < Relief ; IFLS+ > 0,00% 62,50% 37,50% 68,75% 31,25% 0,00%
< IGV ; IFLS+ > < SU ; IFLS+ > 0,00% 87,50% 12,50% 68,75% 31,25% 0,00%
< IGV ;MB∗ > < Relief ;MB∗ > 0,00% 37,50% 62,50% 56,25% 12,50% 31,25%
< IGV ;MB∗ > < SU ;MB∗ > 0,00% 37,50% 62,50% 68,75% 18,75% 12,50%
< IGV ;FLS∗ > < Relief ;FLS∗ > 12,50% 56,25% 31,25% 100,00% 0,00% 0,00%
< IGV ;FLS∗ > < SU ;FLS∗ > 12,50% 62,50% 25,00% 100,00% 0,00% 0,00%
< IGV ; IFLS∗ > < Relief ; IFLS∗ > 0,00% 37,50% 62,50% 62,50% 12,50% 25,00%
< IGV ;FLS∗ > < SU ; IFLS∗ > 0,00% 37,50% 62,50% 81,25% 6,25% 12,50%
< IGV ;AF ∗ > < Relief ;AF ∗ > 0,00% 31,25% 68,75% 87,50% 0,00% 12,50%
< IGV ;AF ∗ > < SU ;AF ∗ > 0,00% 31,25% 68,75% 93,75% 0,00% 6,25%
< IGV ;BF ∗ > < Relief ;BF ∗ > 6,25% 31,25% 62,50% 81,25% 6,25% 12,50%
< IGV ;BF ∗ > < SU ;BF ∗ > 6,25% 37,50% 56,25% 100,00% 0,00% 0,00%

Table 4.5: Empirical Study Synthesis of GRASP

component based on more robust construction mechanisms like those used within em-

bedded methods [54] or incremental wrappers. It could be also endowed with more

effective design of the RCL list (i.e. Reactive GRASP [38]).
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Figure 4.3: Best results found (Fitness criterion) (1)
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Figure 4.4: Best results found (Fitness criterion) (2)



Chapter 5

Swarm Feature Selection: A

continuous PSO for the FS

Problem

5.1 Introduction

Swarm intelligence refers to the problem solving behaviors that emerge from the

interaction of agents or entities that communicate to each other, by acting on their

environments [31]. Particle swarm optimization (PSO), part of the swarm intelligence

family, is known to effectively solve large-scale nonlinear optimization problems [25].

This chapter is devoted to the investigation of FS modeling with swarm behavior. We

devise a model based on the continuous PSO that is able to aggregate filter scores

and hybridize filters with wrapper within the same framework. The reminder of this

chapter is organized as follows: an overview of PSO modeling concepts as well as its

featured properties is given in Section 2. Section 3 is devoted to the devised PSO-

FS approach. Enhancement and more elaborate improvements are investigated in

Section 4. Main contributions and future research topics are summarized by Section

5.
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5.2 Particle Swarm optimization

This section sheds some lights on the main concepts of the swarm optimization

paradigm, details basic PSO. Next, we cover some of the featured enhancements

of the PSO. Finally, we discuss some of the challenging design and implementation

aspects of the PSO in general and FS modeling specifically.

5.2.1 Swarm universe: Overview

Formally, Swarm intelligence is the property of a system whereby a collective behav-

iors of unsophisticated agents interacting locally with the environments [31]. Com-

putational swarm intelligence studies the algorithmic and modeling aspects of such

behaviors. Swarm intelligence was also been referred as collective intelligence. In

fact, swarms entities are endowed with basic and simple behaviors, but the emerging

social behaviors of the swarm are more complex and motivate researchers to develop

computational models. A number of models were inspired from the study of social

behaviors of both animals and insects. Among these biological swarm systems, sim-

ple in structure, and generating collective social behaviors we can cite: ants, bees,

termites, fish scholes, bacteria, etc.

The objective of swarm intelligence is to model the simple behaviors of individuals

and to provide them means of commutation and interaction with environment to solve

complex problems. In our case, we study the Particle Swarm Optimization, which

models two simple behaviors. The first one is to move toward best (or locally best)

solution (or neighbor). The second models the attractiveness to the best memorized

solution found by the particle itself. The resulting collective behaviors of the swarm

(population of particles) is that particles are looking for and updating best solutions.

In several cases commutation is done indirectly and through the environment. Such

a concept plays a key role in the evolution of swarm and it is always referred to

as stigmergy. The idea of PSO is based a set of particles flying through a hyper-

dimensional search space. The population of particles forms a swarm that simulates

the social behaviors of birds within a flock [72]. Particle position changes emulate

social tendencies. They are influenced by its own experience or/and the knowledge
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of its neighbors. In real number space, the position of each particle is determined by

a vector −→x i and its movement by its velocity −→v i. The position update rule (at time

t) is illustrated by equation 5.1:

−→x i(t) ←
−→x i(t− 1) +−→v i(t) (5.1)

On the other hand, velocity is adjusted according to the informations available to

each individual. Three components characterize velocity update (see eq. 5.2):

−→v i(t) ←
−→v i(t− 1)︸ ︷︷ ︸

Habit

+ϕ1 ∗ rand1 ∗ (−→p i −
−→x i(t− 1))︸ ︷︷ ︸

self knowledge

+ϕ2 ∗ rand2 ∗ (−→p g −
−→x i(t− 1))︸ ︷︷ ︸

social knowledge

(5.2)

• first component models the tendency of the particle to continue on the same

direction. It is also known as ”habit”, ”momentum” or ”inertia” component.

• second component illustrates attraction towards the best particle position pi

found. It is ”referred” to as ”self-knowledge”, ”memory” or ”nostalgia”.

• third component models attraction towards best position found among neigh-

borhood or swarm. It is referred to as ”cooperation”, ”social knowledge” or

”information sharing”.

Because of the relative importance of these factors, which can vary from one

decision to another, random weights are applied with rand1 and rand2, and are scaled

with ϕ1 and ϕ2.

5.2.2 Basic PSO

Pseudo-code of the basic PSO [72] is illustrated by Algorithm 38. After swarm ini-

tialization with nbpart particles, particles start the exploration of the search space by

adjusting velocities (Line 9). Velocities updates take into account, for each problem

dimension k, best particle position (xk
besti

), and best swarm position found (xk
bestg

) as
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Algorithm 38: Particle Swarm optimizer

Input:
nbpart: particles number;
ω: inertia weight;
ϕ1,ϕ2: weight factors
Output: xbest : Best solution

1 begin
2 Swarm P ← CreateSwarm(nbpart)
3 xbest ← GetBest(P )
4 while (Stopping criterion satisfied) do
5 foreach (pi ∈ P ) do
6 k ← 0, r1 ← 0, r2 ← 0
7 foreach (dimension k in pi) do
8 r1 ← rand(); r2 ← rand();
9 vk

i ← vk
i + ϕ1.r1.(x

k
besti

− xk
i ) + ϕ2.r2.(x

k
bestg − xk

i )

10 xk
i ← xk

i + vk
i

11 //—Update best personal position—
12 if (xi > xbesti) then
13 xbesti ← xi

14 //—Update best global position—
15 if (xbesti > xbestg) then
16 xbestg ← xbesti

17 xbest ← xbestg

18 Return (xbest)
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well as respective random factors (ϕ1 and ϕ2) and weights (r1 and r2). Once velocities

were adjusted, each swarm particle moves to its new position −→x i. The Resulting new

solutions are compared to the best ones found locally and among the swarm. The

velocity update for the social component could be made according to two strategies.

The first one considers the global best solution of the swarm, while the second limits

the social component update to best among current particle neighborhood. Kennedy

[72], said that with global best the PSO converged fast, but may be trapped in a

local minimum, while with the local best (among neighborhood) the swarm has more

chance to find optimal solution, with slower convergence.

Numerous neighborhood topologies have been studied [72]. They include ring,

wheel, and random topologies. Kennedy and Mendes in [71], have empirically shown

that the suggested neighborhood size for a swarm of 20 particles was 5.

5.2.3 PSO variants

This section is a somewhat more technical look at what researchers have proposed

to extend the basic particle swarm algorithm. We survey some of the more featured

variants that have shown their empirical effectiveness. We should also note that the

majority of the PSO issues are dressed by the velocity update equation (see eq. 5.2).

Parameter selection

Several considerations should be taken into account, when implementing the PSO.

One of the major concerns of the PSO evolution is to look for mechanisms facilitating

rapid convergence and preventing swarm ”explosion” [25]. Such considerations include

velocity clamping, adequate selection of acceleration weights, or even the introduction

of new parameters as the constriction factor or the inertia constant. According to [31],

it was found that the velocity quickly explodes to large values, especially, for particles

far from global and local best positions. To control global exploration of particles, an

upper (vmax) and lower (vmin) limit of vk
i were proposed in [72] as follows (eq. 5.3):
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vk
i





vmax, if(vk
i > vmax)

vmin, if(vk
i < vmin)

vk
i , otherwise.

(5.3)

If limits are set too high the particle movement may be beyond good solutions,

whereas with too small interval the particle movement is limited as well as its ex-

ploration capability. In most of the cases, bounds are selected empirically. Shi and

Eberhart proposed in [118] the inertia weight ω as a new parameter to control global

and local search swarm abilities (see eq. 5.4).

−→v i(t) ← ω.−→v i(t− 1)︸ ︷︷ ︸
Habit

+ϕ1.r1.(
−→p i −

−→x i(t− 1))︸ ︷︷ ︸
self knowledge

+ϕ2.r2.(
−→p g −

−→x i(t− 1))︸ ︷︷ ︸
social knowledge

(5.4)

The value of ω should be carefully defined, because a large value increases diversity

and facilitate exploration, and a small value might eliminates swarm exploration

ability. A similar coefficient was proposed in [22], where velocities were constricted

by a parameter. The constriction factor could be considered as an extension or a

generalization of the inertia parameter, in the sense that it is not only applied to

the previous velocity value but to all velocity updating rule components (habit, self

knowledge and social knowledge).

According to [25], constriction factor improved the convergence once the particle

is focused on the best point in an optimal region. However, it may not converge when

the particle best performance pi is far from pg. In addition to the above presented

velocities regulation issues, basic PSO parameters (i.e. swarm size, neighborhood

structure and size, acceleration coefficients and number of iterations) should be ad-

justed according to the characteristics of the problems.

Binary PSO

PSO was originally developed for continuous valued search space. Nevertheless a

binary PSO was developed in [72]. In such a model particle velocities and movements

were rather defined in terms of probabilities. For example, vk
i = 0.3 implies 30% to
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be 1. The sigmoid function was used to normalize velocities in the range of [0, 1] (see

eq. 5.5):

sig(vk
i ) ←

1

1 + exp (−vk
i )

(5.5)

Particle positions are updated in the following way:

xk
i

{
1, if (rand < sig(vk

i ))

0, otherwise
(5.6)

where rand is random value with a uniform distribution in the range of [0, 1] and xk
i

is the position of particle i on the kth dimension.

Enhanced variants

One can think that instead of considering only the attraction to individual and global

best solution, the particle velocities could be influenced by the success of all its neigh-

bors. The idea was applied with FIPS in [98], where a fully informed PSO was devised.

The acceleration weights ϕi were equally distributed across the entire neighborhood.

CLPSO tried to prevent premature convergence by updating the velocities on the

following way:

vk
i ← ω.vk

i + ϕ.(pbestkfi(k) − xk
i ) (5.7)

where fi(k) defines the particles’ best solution that particle i should learn from, for

the kth dimension. The decision depends on probability pc, referred to a learning

probability. If it is lower than a random generated value (pc < rand), then the

particle will follow its own pbest. Otherwise it will learn from the particle defined by

fi(.). fi(.) applies a tournament selection to define the requested particle. Instead

of limiting the velocity update to only particle experience and best swarm solution,

as in PSO, any potentially interesting particle could guide the current one. Besides,

instead of learning from the same exemplar for all dimensions, each dimension can

learn from a different pbest. The adopted rules increase the swarm diversity and

might lead to enhanced PSO accuracy.

The unified PSO [105], proposed a hybrid scheme between the PSO relying on
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attractiveness of best swarm solution for social component, and the PSO using the

best solution within neighborhood to update its velocity. Consequently, the result-

ing scheme combines both global and local search capabilities within the same PSO

scheme. In fact, it defines two velocity update rules: Gk
i and Lk

i . The first one, (see

eq. 5.8) refers to the global variant of the PSO, while the second (see eq. 5.9) is for the

variant relying on neighborhood as social component. Equation 5.10 aggregates the

two updating rules via a unification factor u. The resulting velocity adjusts particle

movement as by equation 5.11.

Gk
i ← χ.[vk

i + ϕ1.(p
k
i − xk

i ) + ϕ2.(p
k
g − xk

i )] (5.8)

Lk
i ← χ.[vk

i + ϕ′
1.(p

k
i − xk

i ) + ϕ′
2.(p

k
gi
− xk

i )] (5.9)

Uk
i ← u.Gk

i + (1− u).Lk
i u ∈ [0, 1] (5.10)

xk
i ← xk

i + Uk
i (5.11)

Hybrid approaches Some of the PSO variants incorporated evolutionary ca-

pabilities. The main goal was to increase the diversity of the population and to gain

better performances. Many studies proposed operators as crossover, mutation, and

selection [25, 72]. Such hybridization includes combination of GA with PSO, evo-

lutionary PSO (EPSO) and differential evolution PSO (DEPSO). Detailed surveys

could be found in [25, 31].

5.2.4 Swarm Feature selection modeling

Swarm feature selection modeling research mainly covers PSO and ACO approaches.

ACO modeling for a combinatorial problem like feature selection, seems to be more

intuitive because of the discrete nature of decision variables and the possibility of

incremental solution construction. Featured and recent approaches that adopted ACO

in FS include [69], where a decision support system was devised for face recognition,
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and a feature selection approach combining ACO and differential evolution [74] 1

On the other hand, feature selection approaches based PSO favored the use of

discrete, or even binary, version of the PSO as an alternative to adapt the original

continuous PSO to the FS modeling requirement. We focus, on a recent approach

based on an improved version of binary PSO (IBPSO [21]), which was applied to high

dimensional data sets. The model was applied to gene expression data (bioiformat-

ics). The proposed swarm explores the search space of possible attribute combina-

tions. Each particle position refers to a solution2. The velocity update rule used was

comparable to basic PSO (see eq. 5.4) with upper and lower bounds respectively sets

to Vmin = −6, and Vmin = 6. Next, the velocities were normalized by sigmoid function

(see eq. 5.5). Finally, particles positions were set to binary values3, according to the

following equation (eq. 5.12):

Attribute(k)i

{
1, if (rand < sig(vk

i ))

0, otherwise
(5.12)

where i denotes the particle index and k is the kth dimension of the particle position.

The binary PSO variant proposed in [21], tried to tackle the problem of best solution

(pg) trapped in local minima. It suggested to reset pg when the fitness was not

improved for a given number of iterations. 4

We think that it is acceptable to use binary alternative as in IBPSO to adapt the

metaheuristic to the basic requirement of FS modeling. However the question that

should be asked is: was it so effective with FS problems particularly, for search space

exploration?

The evolution ability of the swarm as well as the resulting stigmergy could be

devised more effectively with combinatorial problems like feature selection.

In addition, several PSO variants providing alternatives for velocities update,

definition of neighborhood structures, and suggesting mechanisms for the control of

the exploration/exploitation trade-off motivate us to investigate its adaptations issues

1The study of the ACO variants applied to the FS problem may be the subject of further research
2Each feature is represented by a dimension
3for each dimension
4nit = 3 was used for empirical evaluation [21]
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with FS problems.

Besides, either basic or advanced alternatives, should study the behaviors of the

devised approaches toward high dimensional datasets, since such datasets are char-

acterized by redundant attributes.

5.3 PSO-FS: Swarm Feature selection

Since the basic PSO was originally designed to cope with continuous problems, the

adaptation to the context of feature selection did not necessarily require the system-

atic move to binary or discrete alternatives of basic PSO. We devise a PSO based

the original PSO scheme [72], and adapt it to the requirement of the feature selection

problem. The Particles explore the search space, adjust their velocities and update

their positions according to valuable knowledge provided by filter scores.

The motivation for the adapted continuous PSO design could be summarized as

follows: (i) relying of the original PSO paradigm (ii) improving particle position up-

date rules. Rather than using the sigmoid function to define probabilities, a weighting

scheme is proposed and attributes are selected only if they are above a threshold (iii)

particles initial positions are not set randomly but defined according to filter scores.

(iv) the PSO is not only used as optimization schema but we extend it to an integra-

tion framework combining wrappers and filters strengths.

The devised PSO is based on a weighting scheme. Solutions are represented by a

vector of weights and subsets of selected features are derived from associated weight

vectors using a threshold. A particle position corresponds to a vector of weights.

When particles of the swarm fly over the search space, positions are updated according

to respective velocities and current position. Positions are initially set to the values

of feature scores. Once the particles have moved to the new positions, the resulting

subset of selected features is deduced according to weights and threshold values. One

can think whether the score changes make a sense or if there is semantic that could be

associated to the filter score adjustment? When we consider filter as an approach to

tackle feature selection problems, the resulting ranking scores reflect the individual

relevance of features to the class. It does not reflect the relevance among selected
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features, neither its contribution to improve classification. One of the advantages of

the proposed PSO is its ability to overcome such filters limitation. In fact, the PSO

initializes its particles with individual feature scores and adjust them, over generation,

to reflect relative relevance or contribution to the subset to which it belongs. In

addition, particles adjust their velocities according to relative relevance of the best

solution found and the best in memory. Such dynamic adjustment, could alleviate

the problem encountered with filters which assess only individual feature relevance.

Besides, most of the filter approaches provide scores and not the best subset. The

problem, is how to select the best subset from a given ranking particularly when they

did not take into account feature redundancy. Usually, top-k ranked attributes are

selected [54]. The later filter problem was addressed by our PSO approach by the

generation of initial solutions using filter ranking and stochastic selection of features

among best ranked attributes.

Intuitively, the combination of wrapper and filter might enhance performances

and guide the search to the exploration of interesting regions. In this section, the

swarm feature selection scheme will be studied according to two variants.

The following paragraphs detail algorithmic, technical aspects as well as empirical

results of the devised FS-PSO alternatives.

5.3.1 Swarm based on one filter

The section is devoted to the devised, FS-PSO approach. The detailed alternative is

based on the scores of one filter.

The swarm particles start with weights reflecting feature-class dependency lev-

els and, next, the PSO process adjusts its weights, by looking for relevant features

combination to generate improved subset. Since each solution is represented by an

individual vector of weights, the particle positions updates are done according to

equations 5.1 and 5.2 of the basic PSO scheme [72]. In comparison to, the posi-

tion update formula of the binary PSO, we can note that particles move are more

dependent on velocities. In fact, during swarm evolution, velocities tend to reflect

contribution of the attributes rather than selection probabilities.
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Algorithm 39: FS-PSO

Input:
nbpart: particles number; Cla: Classifier;
ω: inertia weight;
υmin, υmax: velocity bounds
ϕ1,ϕ2: weight factors
F: filter
th: weight Threshold
Output: Sbest: Best solution found

1 begin
2 S ← CreateParticlesSet(nbpart)
3 Sbest ← ∅
4 foreach (particle i ∈ S) do
5 xi ← GenerateSolution(F )
6 Evaluate(xi, Cla)
7 xbesti ← xi

8 if (xbesti ≻ Sbest) then
9 Sbest ← xbesti

10 while (Stopping criterion satisfied) do
11 foreach (particle i ∈ S) do
12 /* particles move */
13 foreach (Attribute k) do
14 r1 ← rand(); r2 ← rand();
15 υk

i ← ω ∗ υk
i + ϕ1 ∗ r1 ∗ (xk

besti
− xk

i ) + ϕ2 ∗ r2 ∗ (Sk
best − xk

i )
16 if (υk

i /∈ [υmin, υmax]) then
17 υk

i ← max(min(υmax, υ
k
i ), υmin)

18 xk
i ← xk

i + υk
i

19 Evaluate(xi, Cla)
20 /* Local and global best solutions Update */
21 if (xi ≻ xbesti) then
22 xbesti ← xi

23 if (xbesti ≻ Sbest) then
24 Sbest ← xbesti

25 Return (Sbest)
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Algorithm 39 details main steps of the proposed approach. The first stage, creates

the swarm and initialize its particles (Lines 2-8). The second stage, involves iterative

steps, which define, for each particle pi and attribute weight k the new velocity (Lines

13-14), and update current particle position vector pi.Solcur (Line 17). The last stage

defines the list of attributes retained by the current solution (Line 18), evaluates its

fitness and updates particle and swarm bests (Lines 21-24). The selected attributes

list is derived from the current particle position Soli according to the threshold th

(see eq. 5.13):

Attribute(k)

{
Selected if (Solki > th)

unselected, otherwise
(5.13)

Initial Solution generation Initial solutions as well as particle positions are

generated according to the filter scores and with stochastic selection mechanism 5.

Algorithm 40: Solution generation based on filter

Input:
F: filter
Output:
S: a solution

1 begin
2 S ← ∅
3 list ← F.GetSortedList()
4 k ← rand(list.length) /* top-k attribute k > n */
5 n ← rand(k) /* n: number of attributes to select */
6 i ← 0
7 while (i ≤ k) do
8 S.add(List(i))
9 i + +

10 while (i > n) do
11 S.remove(List(rand(List.length)))
12 i−−

13 S.updateWeights()
14 Return (S)

5with a given elitism level
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Algorithm 40 illustrates the generation process of intial particle solutions. Par-

ticles are initialized with the top-k attributes. For each particle, the value of k is

randomly generated (Line 4). Besides, a subset of n attributes, is randomly selected

among k best attributes. Such mechanism allows the swarm particles to start from

different search space positions and prevents the selection of similar solutions based

on the top-k attributes, with variable k. Consequently, among k best attributes, pro-

vided by filter ranking, any combination of n ∈]0, k] attributes would be accepted.

The associated weights for the non-retained attributes are set below the threshold th.

The final vector of weights will define the initial position of the particle.

Any filter criterion could be used to generate scores for PSO. In this paper, We

opt for five well known filters (scoring methods):

• Relief [112] attempts to assess features according to their discriminative power.

A weight W [i] is assigned to each feature. Weights are updated in a manner

to reflect feature ability to distinguish between class values. This reference

approach, remains one of the more representative filters used in FS.

• Information Gain and Gain Ratio filter [54] are based on information theory

measures derived from information entropy and mutual information criteria.

• Symmetrical Uncertainty (SU) is another measure of the information theory.

SU criterion is widely used and considered as a robust measure for attribute

ranking [54, 57].

• χ2 filter [54]: is based on χ2 statistics which compute the difference between

attribute values distribution.

The scores provided by filters are normalized to the range of [−1, 1]. If the thresh-

old th is set to zero, only features with positive values are considered in feature subset

solutions.

Empirical study

In this section, we empirically assess, different instances of the proposed swarm ap-

proach. Note that experiments are based on the Validation protocol (see Annex I
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p. 165). The behavior of the PSO-FS is studied through its comparison with the

reference approach IBPSO proposed in [21]. In addition, when particles of the de-

vised approaches are initialized with filter scores, once can think that the comparison

to a continuous PSO with randomly generated swarm would be of a great interest.

This empirical section involves two sets of experiments. The first one compares the

binary PSO and the continuous PSO randomly initialized to PSO-FS6 while the sec-

ond compares the continuous PSO, randomly initialized, to instances of PSO-FS with

different filters.

Tables E.1, E.2, E.3 and E.4 (see ANNEX V, p. 241-244) detail evaluation and

validation accuracies of the respective best solutions obtained with BPSO, continuous

PSO 7 and PSO-FS. The PSO-FS instance relies on Relief filter as initialization

scheme. Reported results, showed significant improvement of continuous PSO over

Binary PSO. The enhancements mainly include Fitness and CPU time and, in some

cases attributes numbers. It covers small, medium and large benchmarks. The more

significant results were obtained with high dimensional problems.

The more impressive results that capture the attention were indisputably provided

by PSO-FS which outperformed reference approach on all benchmarks according to

the fitness criterion 8. For example, the classification error rate (Fitness) obtained

with Breast benchmark was reduced from 28.40% with binary PSO to 6.46% with

PSO-FS.

We also note, the significant reduction of the selected attributes which can be

explained by the swarm initialization with filter scores.

Globally, continuous PSO based on weighted solution representation, showed that

they were better performing than binary PSO. Among the compared approaches,

PSO-FS was the more effective in terms of results, computational cost and dimen-

sionality reduction.

Tables E.5, E.6, E.7, E.8, E.9 and E.10, (see ANNEX V, p. 245-250) summarize

the second set of experiments where the impact of filter scores on swarm initialization

were assessed. Evaluation and validation accuracies of the respective best solutions

6PSO-FS initialized with relief scores
7Randomly initialized
8With statistical test validation
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obtained with three PSO-FS instances using χ2, Relief and SU filter scores are com-

pared to continuous PSO randomly initialized.

The interesting results observed within the last experiment set with PSO-FS re-

lying on Relief filter, could be extended to other instances of PSO-FS. The use of

filters in swarm initialization confirms the effectiveness of PSO-FS with Relief, χ2

and SU. The continuous PSO which showed better results over binary PSO, is now

outperformed by all PSO-FS instances with almost all data sets. The significant im-

provements were obtained with high dimensional problems which confirm the same

finding observed with previous experiment sets. On numerous benchmarks, PSO-FS

succeeded to provide statistically validated improvement for all criteria (evaluation

and validation). The three PSO-FS instances, returned comparable results for more

than one criterion with a slight advantage to swarms initialized with χ2.

5.3.2 Multiple filters impact on swarm

When selection of features are based on weight values, one can think that the more

these values are representative of the feature-class dependence and the classification

context, more the search process would be effective.

As shown in the previous empirical study, the PSO initialization scheme based on

filter scores is suitable. Neverthetheses there are many filters and each one of them is

based on a different criterion. Besides, from one filter to another, both ranking and

scores are different. In general, merging different information sources is a challenging

task. Such consideration would motivate the use of numerous filters within PSO not

only to merge filters scores but also to evolve them within an optimization scheme.

From the optimization perspective, this could enhance the search diversification and

cooperation between particles initialized with different filters. All the steps of the

FS-PSO approach are preserved, and only the generation process of initial solutions

will change. In fact, each swarm particle pi randomly selects the filter that will be

used to build initial solution and starting particle solution. Although that the filters

generate scores in different ranges, all ranges are normalized into [−1, 1] range 9.

9min−max normalization
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Such PSO alternative provided not only a way to combine filter and wrapper, but

a framework to merge filters scores.

Empirical study

Tables E.11, E.12, E.13, E.14, (see ANNEX V, p. 251-254) detail evaluation and

validation performances of the respective best solutions obtained with PSO-FS ini-

tialized with 3 filters. It was compared to a randomly initialized PSO and PSO-FS

based on one filter (Relief ).

The comparison of the PSO based on swarm initialized with three filters to con-

tinuous PSO10 confirms the superiority of PSO endowed with filters. The results

enhancement cover all benchmarks as well as problem dimensions. Now, when we

compare PSO-FS instance based on one filter to the instance using three filters11,

we can remark comparable results in terms of improvements. Moreover, multi-filter

instance enhances performances of both CPU time and number of attributes. In

addition, the number of statistically validated results with enhancements obtained

with Multi-filter PSO scheme is superior to the number provided by one filter PSO

scheme. For example, when PSO-FS based on Relief succeeds, for a given problem,

to improve results with two or three criteria, the multi filter instance provides more

validated criteria. Such results confirm, the stability and the robustness of the multi-

filters PSO scheme, although comparable improvements provided by both PSO-FS

approaches based on filters.

We should also note that the multi filter PSO scheme is more accurate and effective

with high dimensional problem than with small and medium benchmarks. We think

that for small/medium sized problems, filters enhance the search but PSO based on

one filter are sufficient.

10with no filter
11labeled as PSO-FS2 within table results
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5.4 Enhanced PSO-FS: EPSO-FS

CLPSO is considered as a recent alternative which attempted to alleviate the problem

of premature convergence. The application of CLPSO to the FS problem is first,

motivated by the need to encourage search diversification and to reduce the relative

dominance of the best swarm particle when social component velocity is updated. In

fact the CLPSO particles are attracted by good solutions which are not necessarily

the best one. Next, we are interested by the study of the behavioral aspects of both

basic PSO and CLPSO. Finally, we study the impact of the learning parameter on

the PSO variant. In addition to the velocity update rule (see eq. 5.7), three main

points characterize CLSPO [84]:

• instead of limiting the velocity adjustment to the best particle, all particles are

potentially candidates to be selected as exemplars to guide the current particle.

• instead of learning from the same solution (swarm best particle) for all dimen-

sions, each dimension of a particle could learn from a different solution.

• velocity update is based on only one particle instead of two with the basic PSO.

5.4.1 Swarm based on one filter

Here, the devised PSO is based on CLPSO variant and its is endowed with filter scores

that serve as initializations schema. The next section, assesses empirically the impact

of filter used on CLPSO as well as the impact of different filters on final results.

Empirical results

As reference approach based on binary PSO was outperformed by the proposed con-

tinuous PSO alternatives, it would be interesting to compare CLPSO to performances

of PSO-FS12 based on a filter and CL-PSO with a random initialization scheme. Ta-

bles E.15, E.16, E.17 and E.18, p. (E.15- E.18) detail empirical results of these

experiments. From one hand, the CLPSO based on filter clearly outperforms CLPSO

12PSO-FS based on Relief filter is more accurate than random PSO and binary PSO
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randomly initialized. The improvements were not limited to fitness criterion and at-

tribute number. At least 3 criteria (among) were enhanced for each benchmark. For

one third of the datasets the EPSO-FS succeeded to enhance CLPSO results with

all criteria. Similar results were obtained by the comparison of continuous PSO and

PSO-FS. Such results could confirm the superiority of swarm based filter approaches

and the impact of filter scores initialization on final PSO performances. On the other

hand, when we compare enhancements of both PSO based filter alternatives, we can

remark comparable results with slight advantage to CLPSO. Besides, CLPSO based

filter succeed to improve results of small and medium size benchmarks more effectively

than PSO-FS.

The second set of experiments compares performances of four instances of CLPSO:

three instances using different filters and a PSO instance randomly initialized (Tables

E.19, E.20, E.21 and E.22, p. 259-262). As with PSO-FS, all CLPSO based filter

instances confirmed their superiority over CLPSO randomly initialized. Here, we have

another empirical results approving the effectiveness of hybrid wrapper-filter modeling

for schema based on PSO. We should, note that use of filter scores within wrappers

does not only contribute to enhance classification results and attribute number but

also, reduces EPSO-FS running time.

Figure 5.1 illustrates the superiority of CLPSO instances based on filters, through

the distribution of benchmarks and the number of validated criteria for each filter.

For example, Swarm initialized with filter χ2 succeed to enhance results for 5 criteria

on 38% of benchmarks, and more than a half of the benchmarks with exactly 4 criteria
13. This figure also shows the slight superiority of EPSO based χ2.

5.4.2 Multiple filters impact on swarm

In this section, we empirically assess the CLPSO version of the swarm with more

than one filter initializations scheme. Three filters were used: χ2, Relief and SU.

Tables E.24, E.25, E.26 and E.27 (see ANNEX V, p. 264-267) detail evaluation

and validation performances of the respective best solutions obtained with EPSO-FS

13Non cumulated
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Figure 5.1: Enhancements distribution

initialized with 3 filters 14. It was compared to a CLPSO based on (Relief ) filter 15 and

PSO-FS instance based on multi-filters scheme. The comparison of the two EPSO-

FS instances showed the superiority of multi-filters scheme for almost all data sets.

Similar results were found with continuous PSO-FS based on three filters. Hence,

both PSO variants are more effective with swarm initialized by more than one filter

scores. Finally, the comparison of PSO variants based on multi-filters initialization

provides similar results with slight advantage of CLPSO variant on some data sets.

5.5 Summary of empirical analysis

We summarize the PSO experiments, by considering the following two criteria: fitness

and the number of selected attributes. These comparisons use as references an existing

recent binary PSO apporach and an PSO instances randomly initialized16. Resulting

behaviors or tendencies are assessed according to their statistical validated results

for all benchmarks. The following Table (see Table 5.1) illustrates for each PSO

14Table lines with EPSO-FS 2
15EPSO-FS(R)
16no filter used
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instance the percentages of benchmarks for which the its better 17, worse and have a

comparable results18.

Globally results of fitness criterion are better than the reference approaches for

both studied PSO alternative (continious PSO and CLPSO). In fact, the Binary PSO

is outperformed by all our continuous PSO even in the case of the swarm not ini-

tialized by filter scores. Next, the use of PSO, randomly initialized, as reference

approaches confirms the effect of filter scores on swarm evoltion. Comparable re-

sults were confirmed by CLSPO. Finally, PSO-FS based on multi-filters initialization

scheme performs better than CLPSO based on one filter.

Compared Approaches Validated improvement % (fitness) Validated improvement % (Att)
A B A B Comparable A B Comparable

PBSO PSO 10,53% 84,21% 5,26% 36,84% 47,37% 15,79%
BPSO PSO-FS 10,53% 89,47% 0,00% 5,26% 84,21% 10,53%
PSO PSO-FS(X2) 0,00% 90,48% 9,52% 0,00% 100,00% 0,00%
PSO PSO-FS(R) 9,52% 90,48% 0,00% 0,00% 100,00% 0,00%
PSO PSO-FS(SU) 0,00% 100,00% 0,00% 4,76% 95,24% 0,00%
PSO PSO-FS2 0,00% 76,19% 23,81% 0,00% 95,24% 4,76%
CLPSO PSO-FS(R) 14,29% 71,43% 14,29% 4,76% 95,24% 0,00%
CLPSO CLPSO(R) 9,52% 80,95% 9,52% 0,00% 100,00% 0,00%
CLPSO CLPSO(X2) 0,00% 90,48% 9,52% 0,00% 100,00% 0,00%
CLPSO CLPSO(SU) 0,00% 85,71% 14,29% 0,00% 95,24% 4,76%
CLPSO(R) PSO-FS2 4,76% 71,43% 23,81% 0,00% 95,24% 4,76%
CLPSO(R) CLPSO2 4,76% 85,71% 9,52% 0,00% 100,00% 0,00%

Table 5.1: Empirical Study Synthesis of PSO

5.6 Conclusion

This chapter was devoted to feature selection modeling with swarm approaches. We

devised a number of continuous PSO variants using weighted solutions representation.

PSO based approaches succeed through the different proposed alternatives to provide

a framework allowing the hybridization of filters and wrappers. In fact, empirical

study has confirmed the superiority of models based on swarm initialized with filters.

17improvement over 10 runs (at least) is statistically validated
18statistical test is not in favor of any PSO instance
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Such encouraging results encourage us to investigate more PSO variants as well as the

integration of information fusion modeling tools to cope with the diversity of problem

knowledge sources provided by filter scores.



Chapter 6

Conclusion And Perspectives

6.1 Conclusion

After a detailed review of both featured and recent trends of feature selection mod-

eling, we investigated a set of approaches that have covered a set of concepts in

relation with combinatorial optimization as well as feature Selection problem speci-

ficities. These approaches were ranging from local search to evolutionary and swarm

paradigms. The second chapter covered a set of local search operators devised to

endow genetic algorithm with intensification and guidance mechanisms. The result-

ing memetic alternatives were studied from different perspectives and aspects. The

effectiveness and accuracies were empirically studied and compared to reference ap-

proaches using a set of benchmarks and validation criteria. The experiments showed

the superiority of the devised memetic alternatives for small and medium sized bench-

marks. In addition, the adaptation efforts of LS operators to high dimensional data

sets have shown its effectiveness in comparison to GA and a recent reference memetic

approaches. The third chapter was devoted to investigation of the second contribu-

tion of this thesis. The proposed GRASP scheme was adapted to the requirement

of the FS problem. In fact, effective and composite LS operators proposed within

the memetic schema were deployed as refinement component of the GRASP. Besides,

the devised GRASP-FS alternatives allowed us to combine both wrapper and filter

in a natural way where filters participate to the construction of initial solutions and
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the second stage refines them through local search. The fourth chapter explored a

swarm optimization paradigm. The investigated approach was designed as a continu-

ous PSO based on weigthing scheme for attribute selection. The design of continuous

PSO based on normalized real valued encoding allows us to hybridize wrappers with

filters through the usage of filter scores as particle initialization schema.

Throughout the different contributions both quantitative and qualitative crite-

ria were studied, and an important aspect that was taken into consideration: the

exploration-exploitation trade-off. Such aspects mainly determined the effectiveness

and the accuracy of the devised algorithms for the optimization paradigm investi-

gated. From the design perspective, a good optimization algorithm balances these

contradictory objectives effectively.

6.2 Perspectives

Although that the proposed and studied feature selection approaches could be con-

sidered as alternatives to the existing featured and reference approaches, numerous

aspects, ranging from design issues to the empirical behavioral assessment, should be

investigated. In fact, memetic approaches could be enhanced to schema deploying dif-

ferent local search operators. The diversification of the neighborhood structure might

be beneficial for both local search and the whole evolutionary process. Adaptive LS

behaviors (i.e. meme selection mechanism), complexity, and exploration-exploitation

trade-off issues should be investigated. Besides, the deployment of different local

search operators on distributed and cooperative instances of evolutionary strategies

(i.e. island models) might be an interesting research perspective for the feature se-

lection problem.

The GRASP-FS could be endowed with path-relinking. Such mechanism could

be implemented in different ways and the resulting behaviors would be interesting to

investigate. Another, idea that deserves to be studied is to use filter knowledge, within

construction stage to generate new solutions from feature subsets of best solutions

found.

Also, PSO could be extended to more enhanced PSO alternatives like UPSO
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[25, 105] or FIPS [98]. It is also interesting to study the behavior of PSO when it is

endowed with LS operators and to analyze the impact of LS on different PSO variants.

In addition, variable and self adjustable threshold for attribute selection in PSO-

FS could be helpful for researches looking for adaptive PSO for FS.

On the other hand the work done in this thesis, might pave the way to the adoption

of new formulation issues in relation with both machine learning and combinatorial

optimization. In fact, both validation and evaluation criteria could be investigated in

order to design more reliable fitness function. In addition, the proposed LS operators,

could be also considered in the design of Variable Neighborhood Search (V NS) tack-

ling the problem of feature selection. Other swarm optimization methods could be

investigated to hybridize filters scores as well as wrappers and filters. Such methods

could be based on Artificial bees or ant colonies.

Finally, all approaches that could be devised should take into consideration, in

addition to the adaptation effort, the trade-off between exploration and exploitation

as well as the investigation of the behaviors of the resulting processes.



Appendix A

Annex I: Validation Protocol

This annex covers main steps of the assessment procedures, validation, experiments

settings and empirical comparison of the proposed feature selection approaches.

Literature of FS endeavors, provides empirical assessment of their approaches ei-

ther as application to specific problem (i.e. fault detection, financial modeling, gene

bio-marker identification, etc) or using benchmark data sets with a given range of

problem dimensionalities. Therefore there is no clear evidence about the effectiveness

of references or new approaches for its ability to handle different problem dimen-

sionality scales with the same robustness. The need to such study becomes of first

requirement, particularly for the behavioral study of the proposed approaches.

The proposed assessment methodology that was used throughout the thesis, covers

evaluation requirements of both search space exploration and validation stage of the

final solution 1.

The first stage needs an evaluation procedure which is able to assign a fitness

value to a solution representing a set of selected attributes. In the case of wrappers

, usually, a classifier is used to assess the solution accuracy. Once the classifier

terminates learning from data, the classification accuracy is evaluated on a different

data set (test data). Therefore, we opt for generalization (test) error as a criterion for

fitness evaluation, and hold out (HO). The same classifier is used during the search

process.

1Best solution found
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Figure A.1: Assessment procedures

The second stage requires more robust and reliable evaluation process to evaluate

final solution returned by the search process. The selected attributes could be opti-

mized for the classifier used in first stage, and the data used. It could be in some way

biased by the search process and the classifier, when we try to minimize the error

rate on test data. In order to, provide reliable assessment procedures of selected at-

tributes, we decided to evaluate them on different classifiers and data than those used

during the search process. Consequently, initial data set will be split in two subsets,

one for the search and fitness evaluation and the second for validation. We should

note, that the two data set generated after the split maintains class distribution of

the original data set dataset. It is the same for the data used with the first stage

for fitness evaluation. Besides, the classification performances of the selected features

will be assessed on different classifiers. In comparison to the classical wrapper ap-

proaches, often, validation stage is omitted and when it is done it is limited to the

test on different data set. Figure A.1 illustrates the assessment procedures for both
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fitness evaluation and validation stage.

Experiments involving search and validation stages are repeated at least ten times.

Indeed, the comparison to the respective reference approaches was based on mean

and standard deviation values of experiments of the same types. Statistical tests

were provided with T-test. Experiences of a given approach or model instance are

considered statistically validated with a confidence level of 97, 5% only if the value

of T-test is approximatively less than −2, 086 2. The set of adopted procedures

and metrics in relation with experiments search and validation define the validation

protocol.

The validation protocol relies on a set of featured benchmarks used by different

feature selection reference approaches as well as for classification matters. We should

note, that to the best of our knowledge, there was not a study that has assessed

the behaviors of its approaches on different problem dimensionality. To this end, we

provides three sets of benchmarks (see Table A.1). The small data sets provides less

than 100 attributes, while those of medium size ranges from 100 to 1000 attributes.

Finally, large data sets correspond to high dimensional data sets with more than 1000

attributes.

2in comparison to reference approach, and for experiments repeated at least 10 times
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Data Set Attributes Instances Classes Type Source Description
Sonar 60 208 2 Small [16] Classification of sonar

signals
Spam Base 57 4601 2 Small [16] Email spam detection
Soybean 35 307 19 Small [16] Soybean disease
Arrhythmia 279 452 2 Medium [16] Cardiac arrhythmia
Secom 590 1567 2 Medium [16] Semi-conductor man-

ufacturing process
Semeion 256 1593 10 Medium [16] Handwritten digits

recognition
Breast 24481 97 2 Large [1] Microarrays of breast

cancer dataset
CNS 7128 60 2 Large [1] Patients outcome pre-

diction for central ner-
vous system embry-
onal tumor

Colon 2000 60 2 Large [1] Colon tumor
Leukemia 3C 7129 72 3 Large [1] blood cell cancer
Leukemia 4C 7129 72 4 Large [1] blood cell cancer
Lung Cancer 15154 253 2 Large [1] Lung Cancer
MLL 12582 72 3 Large [1] MLL: Mixed Lineage

Leukemia
Ovarian 15154 253 2 Large [1] Ovarian cancer
SRBCT 2308 83 4 Large [1] Microarray gene ex-

pression proles of
small, round blue cell
tumors

9 tumors 5726 60 9 Large [2] Transcript proles of 9
common human tu-
mors

11 tumors 12533 174 11 Large [2] Transcript proles of 11
common human tu-
mors

14 tumors 15009 308 26 Large [2] Transcript proles of 14
common human tu-
mors

Brain Tumor 10367 50 4 Large [2] Brain Tumor
Prostate Tumor 10509 102 2 Large [2] Prostate Tumor
Lymphoma 4026 62 3 Large [1] Lymphatic cells can-

cer (immune system)
Challenge 2004 27679 90 34 Large ECML

PKDD’04
challenge 3

http://www.upo.es/eps/bigs/datasets.html

Table A.1: Benchmark data sets
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Annex II: FS-Framework Overview

In this section, we shed some light on the implemented framework that was used for

the empirical validation of the proposed approaches. We detail the software archi-

tecture as the common and reusable services. Figures B.1 and B.2, illustrate the big

picture of the of the software that we have developed and extended throughout the

thesis.

Figure B.1, shows the main search strategies implemented. Each metaheuristic is

considered as a component of the FS-framework which provides them low level rou-

tines and basic services. Common routines bring basic services which include: Data

preparation for search and validation stages, output stream redirection of experiments

to respective log files, and assessments procedures required by the validation proto-

col. Such services were designed to be reusable by search strategies. Consequently,

any new heuristic would reuse common routines as services. Besides the framework

interfaces the Weka package [129] was used for classification tasks and to retrieve

filter scores.

Once an experiment batch 1 terminates, the analyzer module generates compact

and readable results through the transformation of experiments log-file. The trans-

formation process is illustrated by Figure B.3 The first stage provides inputs to the

transformation process through stream redirection. The pruning stage selects ex-

periments that will be analyzed while the aggregation stage prepares the data for

1Set of experiments repeated n times
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Figure B.1: Framework Architecture: Big picture

statistical analysis by extracting requested results from log-files. Statistical Analy-

sis stage computes according to the number of experiments runs, means, standard

deviation and statistical tests (T-test).
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Figure B.2: Framework orthogonal services

Figure B.3: Analyzer process: main Steps



Appendix C

Annex III: Detailed Empirical

Results of Chapter III
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar - M : 4,20% 25,17% 41,38% 4945022,09 22,27

Sd: 1,68% 1,73% 2,22% 1811950,54 4,78
T-: - - - - -

FLS1 M : 5,81% 25,97% 42,47% 2057890,07 18,51
Sd: 1,60% 2,68% 3,41% 941186,38 3,61
T-: 29,04 7,83 56,88 -19,5 -16,23

It.FLS1 M : 5,89% 26,38% 42,16% 1898746,08 17,46
Sd: 1,51% 3,27% 2,81% 783274,58 4,53
T-: 34,42 10,65 9,06 -20,52 -16,03

Spambase - M : 5,52% 9,92% 15,34% 34180282,63 23,88
Sd: 0,39% 0,80% 1,93% 11210986,2 3,6
T-: - - - - -

FLS1 M : 5,88% 9,91% 15,59% 17992626,02 24,41
Sd: 0,36% 0,66% 1,58% 6840868,62 3,58
T-: 3,92 -0,11 3,69 -8,08 0,62

It.FLS1 M : 5,98% 10,03% 15,13% 16175281,71 23,33
Sd: 0,58% 0,72% 1,47% 6890785,28 3,7
T-: 5,03 0,95 -2,73 -9 -0,63

Soybean - M : 3,80% 6,61% 60,93% 132256274,25 16,63
Sd: 0,44% 0,75% 2,20% 22491792,41 0,74
T-: - - - - -

FLS1 M : 4,16% 6,95% 61,42% 65302386,89 16,34
Sd: 0,42% 0,77% 2,27% 18691227,55 1,35
T-: 9,34 4,01 1,94 -12,48 -5,08

It.FLS1 M : 4,18% 6,85% 61,31% 63108997,28 16,05
Sd: 0,55% 0,92% 2,17% 17533184,75 1,4
T-: 9,45 2,87 1,48 -12,89 -10,7

Arrythmia - M : 17,85% 40,09% 42,12% 72989654,33 42,67
Sd: 1,62% 1,74% 1,34% 20906189,17 5,16
T-: - - - - -

FLS1 M : 22,63% 40,38% 42,42% 36445116,03 41,03
Sd: 2,28% 2,57% 1,26% 13510740,06 9,14
T-: 112,24 1,21 1,68 -7,29 -1,55

It.FLS1 M : 23,19% 40,73% 42,73% 32049749,13 34,67
Sd: 2,41% 3,49% 1,52% 12710273,72 12,47
T-: 145,33 2,23 3,41 -8,11 -6,29

Secom - M : 5,15% 7,05% 8,28% 10388936,67 12
Sd: 0,47% 0,41% 0,28% 4498211,79 4
T-: - - - - -

FLS1 M : 6,33% 6,73% 8,80% 2567049,82 4,13
Sd: 0,61% 0,16% 1,56% 1443081,99 3,63
T-: 36,63 -4,42 9,61 -12,5 -15,64

It.FLS1 M : 5,98% 6,71% 9,37% 2668796,41 4,51
Sd: 0,70% 0,16% 1,56% 1298633,22 3,1
T-: 25,96 -4,62 34,82 -12,35 -14,92

Semeion - M : 10,90% 16,52% 81,15% 172086309,86 49
Sd: 1,13% 1,34% 0,33% 29063662,28 1,41
T-: - - - - -

FLS1 M : 14,77% 16,97% 81,25% 86968845,26 49,6
Sd: 1,59% 1,21% 0,32% 22934450,76 1,88
T-: 35,99 3,82 6,12 -15,32 13,13

It.FLS1 M : 15,09% 17,51% 81,20% 89357655,23 48,5
Sd: 1,66% 1,53% 0,28% 29140532,37 3,16
T-: 37,87 8,17 3,47 -14,88 -40

Table C.1: GA vs MAs respectively endowed with FLS and It.FLS
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib
Sonar MBEGA M : 5,16% 24,65% 42,56% 3298287,84 22,89

Sd: 1,58% 3,29% 2,83% 1461028,35 5,57
T-: - - - - -

FLS1 M : 5,81% 25,97% 42,47% 2057890,07 18,51
Sd: 1,60% 2,68% 3,41% 941186,38 3,61
T-: 7,85 15,92 -0,62 -22,11 -28,72

it.FLS1 M : 5,89% 26,38% 42,16% 1898746,08 17,46
Sd: 1,51% 3,27% 2,81% 783274,58 4,53
T-: 9,23 17,85 -2,32 -24,49 -22,24

Spambase MBEGA M : 5,59% 9,36% 15,53% 18637193,26 18,79
Sd: 0,37% 1,08% 1,90% 5962776,42 4,77
T-: - - - - -

FLS1 M : 5,88% 9,91% 15,59% 17992626,02 24,41
Sd: 0,36% 0,66% 1,58% 6840868,62 3,58
T-: 8,21 10,07 0,49 -3,26 28,66

it.FLS1 M : 5,98% 10,03% 15,13% 16175281,71 23,33
Sd: 0,58% 0,72% 1,47% 6890785,28 3,7
T-: 10,74 12,71 -3,22 -14,5 26,87

Soybean MBEGA M : 3,91% 6,51% 61,16% 81449381,88 16,31
Sd: 0,35% 0,67% 2,35% 16299303,56 1,4
T-: - - - - -

FLS1 M : 4,16% 6,95% 61,42% 65302386,89 16,34
Sd: 0,42% 0,77% 2,27% 18691227,55 1,35
T-: 15,19 10,87 1,61 -9,03 0,32

it.FLS1 M : 4,18% 6,85% 61,31% 63108997,28 16,05
Sd: 0,55% 0,92% 2,17% 17533184,75 1,4
T-: 13,31 8,48 0,89 -10,24 -3,05

Arrythmia MBEGA M : 18,90% 38,04% 42,22% 39118432 33,86
Sd: 1,72% 2,81% 0,73% 15702992,78 14,92
T-: - - - - -

FLS1 M : 22,63% 40,38% 42,42% 36445116,03 41,03
Sd: 2,28% 2,57% 1,26% 13510740,06 9,14
T-: 40,31 39,61 1,96 -2,17 5,62

it.FLS1 M : 23,19% 40,73% 42,73% 32049749,13 34,67
Sd: 2,41% 3,49% 1,52% 12710273,72 12,47
T-: 47,65 16,09 4,95 -5,24 0,55

Secom MBEGA M : 5,31% 7,01% 8,77% 6773548,46 8,85
Sd: 0,50% 0,36% 0,89% 3119318,3 4,04
T-: - - - - -

FLS1 M : 6,33% 6,73% 8,80% 2567049,82 4,13
Sd: 0,61% 0,16% 1,56% 1443081,99 3,63
T-: 16,58 -26,97 0,65 -38,37 -30,88

it.FLS1 M : 5,98% 6,71% 9,37% 2668796,41 4,51
Sd: 0,70% 0,16% 1,56% 1298633,22 3,1
T-: 10,95 -28,59 21,71 -38,23 -29,32

Semeion MBEGA M : 10,74% 15,20% 81,04% 123425926,22 51,44
Sd: 0,96% 1,33% 0,16% 18016344,16 2,79
T-: - - - - -

FLS1 M : 14,77% 16,97% 81,25% 86968845,26 49,6
Sd: 1,59% 1,21% 0,32% 22934450,76 1,88
T-: 66,77 15,08 27,63 -38,52 -6,7

it.FLS1 M : 15,09% 17,51% 81,20% 89357655,23 48,5
Sd: 1,66% 1,53% 0,28% 29140532,37 3,16
T-: 66,03 19,16 26,7 -35,83 -10,83

Table C.2: MBEGA vs MAs respectively endowed with It.FLS1 and It.FLS1
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar - M : 4,20% 25,17% 41,38% 4945022,09 22,27

Sd: 1,68% 1,73% 2,22% 1811950,54 4,78
T-: - - - - -

it.FLS1 M : 5,89% 26,38% 42,16% 1898746,08 17,46
Sd: 1,51% 3,27% 2,81% 783274,58 4,53
T-: 34,42 10,65 9,06 -20,52 -16,03

IFLS M : 5,24% 27,45% 40,04% 1625966,05 16,5
Sd: 1,98% 3,57% 3,72% 712344,82 5,65
T-: 14,76 31,76 -47,52 -22,56 -22,14

Spambase - M : 5,52% 9,92% 15,34% 34180282,63 23,88
Sd: 0,39% 0,80% 1,93% 11210986,2 3,6
T-: - - - - -

it.FLS1 M : 5,98% 10,03% 15,13% 16175281,71 23,33
Sd: 0,58% 0,72% 1,47% 6890785,28 3,7
T-: 5,03 0,95 -2,73 -9 -0,63

IFLS M : 5,83% 9,94% 15,76% 15257565,92 24
Sd: 0,52% 0,83% 1,65% 4705756,86 3,74
T-: 3,22 0,22 6,15 -9,46 0,14

Soybean - M : 3,80% 6,61% 60,93% 132256274,25 16,63
Sd: 0,44% 0,75% 2,20% 22491792,41 0,74
T-: - - - - -

it.FLS1 M : 4,18% 6,85% 61,31% 63108997,28 16,05
Sd: 0,55% 0,92% 2,17% 17533184,75 1,4
T-: 9,45 2,87 1,48 -12,89 -10,7

IFLS M : 4,22% 6,82% 61,64% 56129293,65 16,3
Sd: 0,39% 0,81% 2,18% 6264024,58 1,18
T-: 10,08 2,5 2,73 -14,19 -5,75

Arrythmia - M : 17,85% 40,09% 42,12% 72989654,33 42,67
Sd: 1,62% 1,74% 1,34% 20906189,17 5,16
T-: - - - - -

it.FLS1 M : 23,19% 40,73% 42,73% 32049749,13 34,67
Sd: 2,41% 3,49% 1,52% 12710273,72 12,47
T-: 145,33 2,23 3,41 -8,11 -6,29

IFLS M : 21,84% 41,54% 43,14% 83127748,53 28,63
Sd: 2,66% 2,36% 1,93% 55025810,76 11,2
T-: 16,07 5,09 4,38 2,02 -12,84

Secom - M : 5,15% 7,05% 8,28% 10388936,67 12
Sd: 0,47% 0,41% 0,28% 4498211,79 4
T-: - - - - -

it.FLS1 M : 5,98% 6,71% 9,37% 2668796,41 4,51
Sd: 0,70% 0,16% 1,56% 1298633,22 3,1
T-: 25,96 -4,62 34,82 -12,35 -14,92

IFLS M : 6,13% 6,80% 8,67% 2136618,26 3,58
Sd: 0,77% 0,38% 1,57% 1335901,87 3,08
T-: 11,15 -3,05 12,45 -12,69 -13,95

Semeion - M : 10,90% 16,52% 81,15% 172086309,86 49
Sd: 1,13% 1,34% 0,33% 29063662,28 1,41
T-: - - - - -

it.FLS1 M : 15,09% 17,51% 81,20% 89357655,23 48,5
Sd: 1,66% 1,53% 0,28% 29140532,37 3,16
T-: 37,87 8,17 3,47 -14,88 -40

IFLS M : 16,17% 19,50% 81,47% 258732416,17 44,58
Sd: 1,94% 1,67% 0,44% 85018732,66 3,26
T-: 27,71 12,26 6,82 14,24 -14,79

Table C.3: GA vs MAs respectively endowed with It.FLS1 and IFLS
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib
Sonar AF M : 7,88% 28,50% 41,42% 628848,1 18,3

Sd: 1,42% 4,15% 3,97% 263522,47 6,18
T-: - - - - -

FLS1 M : 6,83% 26,84% 42,15% 705239,22 20,16
Sd: 1,78% 3,90% 2,73% 306780,3 5,22
T-: -41,28 -13,77 2,26 4,1 4,2

FLS2 M : 8,48% 26,59% 41,93% 618405,35 16,41
Sd: 2,12% 2,95% 3,43% 297707,6 3,92
T-: 7,3 -79,08 1,66 -0,59 -4,26

Spambase AF M : 6,91% 10,85% 16,24% 5477152,6 24,2
Sd: 1,01% 1,29% 1,98% 905929,68 2,82
T-: - - - - -

FLS1 M : 6,36% 10,11% 15,36% 6058079,71 24,76
Sd: 0,66% 0,78% 1,47% 2460281,39 3,27
T-: -6,1 -30,27 -10,72 9,19 2,01

FLS2 M : 6,71% 10,12% 15,74% 6130995,57 23,2
Sd: 0,56% 0,78% 1,95% 2835806,16 3,49
T-: -2,3 -27,83 -4,16 8,56 -3,54

Soybean AF M : 5,56% 8,98% 62,76% 17173025,4 15,2
Sd: 0,79% 2,24% 3,95% 3835722,11 1,75
T-: - - - - -

FLS1 M : 4,68% 6,88% 60,38% 18231616 16,33
Sd: 0,60% 1,20% 2,24% 4443395,67 0,8
T-: -10 -15,63 -6,06 9,95 6,29

FLS2 M : 4,83% 7,36% 60,33% 20324036,1 15,6
Sd: 0,43% 1,39% 2,10% 7534630,92 1,61
T-: -7,91 -12,15 -6,12 23,56 2

Arrythmia AF M : 27,14% 42,19% 43,73% 21437945,27 28,27
Sd: 2,05% 3,10% 2,35% 15475436,96 14,19
T-: - - - - -

FLS1 M : 23,61% 40,85% 42,84% 11465370,72 38,21
Sd: 3,53% 3,28% 1,65% 4422342,17 12,53
T-: -20,08 -7,03 -5,04 -8,19 9,01

FLS2 M : 26,48% 42,48% 43,82% 10367383,7 36,7
Sd: 2,54% 2,96% 2,04% 4480849,19 10,59
T-: -3,48 1,24 0,45 -9,03 6,25

Secom AF M : 6,51% 6,77% 8,59% 2470382,24 5,18
Sd: 0,48% 0,28% 1,90% 4875783,25 6,71
T-: - - - - -

FLS1 M : 6,21% 6,78% 8,86% 1119385,16 6,84
Sd: 0,69% 0,33% 1,62% 755082,59 8,16
T-: -11,08 1,68 3,05 -10,58 5,75

FLS2 M : 6,47% 6,68% 8,62% 857933,71 3,04
Sd: 0,43% 0,13% 1,51% 725750,43 2,91
T-: -0,74 -4,77 0,35 -12,74 -6,11

Semeion AF M : 17,17% 19,22% 81,46% 64127293,33 46,33
Sd: 1,74% 2,19% 0,47% 14045264,33 4,62
T-: - - - - -

FLS1 M : 15,34% 18,16% 81,32% 26848309,69 48,31
Sd: 3,14% 1,79% 0,34% 6879201,84 2,25
T-: -2,73 -1,31 -6,18 -19,14 1,11

FLS2 M : 18,01% 19,25% 81,46% 25366502,22 45,87
Sd: 1,76% 2,21% 0,36% 9271511,53 4,53
T-: 1,25 0,05 0,16 -19,86 -0,26

Table C.4: Memetic algorithms comparison: AF vs FLS1 and FLS2
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar AF M : 7,88% 28,50% 41,42% 628848,1 18,3

Sd: 1,42% 4,15% 3,97% 263522,47 6,18
T-: - - - - -

FLS2 M : 8,48% 26,59% 41,93% 618405,35 16,41
Sd: 2,12% 2,95% 3,43% 297707,6 3,92
T-: 7,3 -79,08 1,66 -0,59 -4,26

IFLS M : 6,57% 26,81% 42,02% 463557,25 15,67
Sd: 2,78% 3,14% 3,12% 133370,31 4,29
T-: -13,77 -22,69 1,41 -9,46 -5,93

Spambase AF M : 6,91% 10,85% 16,24% 5477152,6 24,2
Sd: 1,01% 1,29% 1,98% 905929,68 2,82
T-: - - - - -

FLS2 M : 6,71% 10,12% 15,74% 6130995,57 23,2
Sd: 0,56% 0,78% 1,95% 2835806,16 3,49
T-: -2,3 -27,83 -4,16 8,56 -3,54

IFLS M : 6,96% 10,48% 15,78% 5159665,36 20,36
Sd: 1,41% 0,81% 1,59% 2089628,95 5,85
T-: 0,2 -5,08 -5,63 -1,75 -7,58

Soybean AF M : 5,56% 8,98% 62,76% 17173025,4 15,2
Sd: 0,79% 2,24% 3,95% 3835722,11 1,75
T-: - - - - -

FLS2 M : 4,83% 7,36% 60,33% 20324036,1 15,6
Sd: 0,43% 1,39% 2,10% 7534630,92 1,61
T-: -7,91 -12,15 -6,12 23,56 2

IFLS M : 4,78% 7,42% 61,10% 16871408 15,5
Sd: 0,82% 1,97% 3,35% 3974319,42 1,83
T-: -7,46 -11,52 -4,02 -1,79 1,62

Arrythmia AF M : 27,14% 42,19% 43,73% 21437945,27 28,27
Sd: 2,05% 3,10% 2,35% 15475436,96 14,19
T-: - - - - -

FLS2 M : 26,48% 42,48% 43,82% 10367383,7 36,7
Sd: 2,54% 2,96% 2,04% 4480849,19 10,59
T-: -3,48 1,24 0,45 -9,03 6,25

IFLS M : 23,01% 42,42% 43,93% 82732595,38 33,13
Sd: 4,20% 3,53% 1,77% 59253033,88 12,06
T-: -6,09 0,48 0,83 10,89 2,79

Secom AF M : 6,51% 6,77% 8,59% 2470382,24 5,18
Sd: 0,48% 0,28% 1,90% 4875783,25 6,71
T-: - - - - -

FLS2 M : 6,47% 6,68% 8,62% 857933,71 3,04
Sd: 0,43% 0,13% 1,51% 725750,43 2,91
T-: -0,74 -4,77 0,35 -12,74 -6,11

IFLS M : 6,25% 6,80% 7,97% 3840185,88 4,5
Sd: 0,70% 0,40% 1,22% 8213648,22 6,39
T-: -3,25 1,64 -8,13 3,08 -1,35

Semeion AF M : 17,17% 19,22% 81,46% 64127293,33 46,33
Sd: 1,74% 2,19% 0,47% 14045264,33 4,62
T-: - - - - -

FLS2 M : 18,01% 19,25% 81,46% 25366502,22 45,87
Sd: 1,76% 2,21% 0,36% 9271511,53 4,53
T-: 1,25 0,05 0,16 -19,86 -0,26

IFLS M : 18,05% 22,84% 81,33% 115284482,5 41,5
Sd: 2,13% 1,49% 0,09% 29707595,88 4,95
T-: 0,87 3,76 -3,3 4,79 -1,94

Table C.5: Memetic algorithms comparison: AF vs FLS2 and IFLS
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Data Local search Measure Fitness Validation Validation CPU(ms) # Attrib.
M : 2,13% 45,19% 50,14% 5086055,47 38,33

- Sd: 2,56% 7,28% 4,87% 1719792,54 6,65
(GA only) T-: - - - - -

M : 11,11% 49,49% 46,48% 1054957 11,56
Breast AF+ Sd: 5,21% 5,08% 5,71% 1002712,06 6,86

T-: 8,45 3,6 -5,4 -36,74 -25,3
M : 3,64% 48,22% 48,26% 830939,18 3,82

MB+ Sd: 2,16% 6,63% 4,24% 264272,02 0,87
T-: 3,83 4,26 -3,33 -51,93 -53,2
M : 0,00% 39,23% 43,95% 2951100,54 34,69

- Sd: 0,00% 10,70% 5,11% 1517342,83 11,47
(GA only) T-: - - - - -

M : 4,24% 48,06% 41,58% 884081,91 15,18
CNS AF+ Sd: 6,16% 5,12% 6,13% 623905,41 7,11

T-: 19,25 38,61 -2,33 -48,7 -63,71
M : 0,83% 44,25% 41,67% 172647,13 3,75

MB+ Sd: 2,36% 7,00% 6,52% 43401,1 1,91
T-: 8 14,61 -6,88 -111,89 -225,03
M : 1,92% 27,79% 32,66% 2154451,46 28,15

- Sd: 3,00% 4,83% 5,79% 1209434,43 10,54
(GA only) T-: - - - - -

M : 6,73% 24,32% 34,09% 1443520,77 26,08
Colon AF+ Sd: 4,75% 5,06% 7,36% 927548,22 12,31

T-: 8,67 -7,27 1,7 -4,65 -2,53
M : 3,75% 22,71% 30,77% 145156,1 3,2

MB+ Sd: 6,04% 9,33% 10,51% 56091,5 1,14
T-: 3,64 -5,53 -4,74 -14,68 -53,61

Table C.6: GA vs MAs endowed with AF+ and MB+ (1)
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Data Local search Measure Fitness Validation Validation CPU (ms) # Attrib.
M : 0,00% 3,08% 19,50% 13669924,58 26,67

- Sd: 0,00% 2,40% 10,12% 6257542,88 7,99
(GA only) T-: - - - - -

M : 0,00% 2,59% 16,13% 29587089,5 31,5
Ovarian AF+ Sd: 0,00% 2,10% 11,00% 18545416,25 8,87

T-: - -3,82 -2,56 27,6 4,64
M : 0,00% 2,74% 5,74% 1154254,29 6,14

MB+ Sd: 0,00% 1,99% 2,82% 560388,95 3,85
T-: - -2,6 -19,04 -66,5 -20,49

SRBCT M : 0,00% 13,30% 43,86% 7344262,55 41,45
- Sd: 0,00% 7,72% 5,68% 3084313,63 6,71

(GA only) T-: - - - - -
M : 2,16% 19,11% 48,78% 3167339,45 33,36

AF+ Sd: 3,27% 6,31% 7,12% 1235739,39 7,74
T-: 9,17 7,79 8,6 -15,51 -9,39
M : 1,19% 23,17% 40,30% 706259,75 11,63

MB+ Sd: 3,37% 7,20% 10,50% 409180,35 7,63
T-: 8 14,07 -5,32 -29,38 -24,99

9 Tumors M : 20,00% 77,17% 94,39% 5829173,33 41,17
- Sd: 4,02% 9,07% 2,10% 2471650,62 7,03

(GA only) T-: - - - - -
M : 34,07% 79,56% 93,70% 4218204,33 27,67

AF+ Sd: 4,01% 9,19% 1,86% 2932298,71 10,93
T-: 16,34 6,49 -2,55 -3,56 -6,31
M : 29,33% 78,80% 94,20% 5856291,9 34,5

MB+ Sd: 5,62% 7,52% 1,89% 3415222,97 8,71
T-: 15,15 1,96 -0,64 0,06 -7,55

11 Tumors M : 5,99% 28,36% 74,04% 21449781,82 47,18
- Sd: 1,53% 4,60% 4,19% 9370248,49 2,04

(GA only) T-: - - - - -
M : 14,77% 33,66% 78,05% 16282683,5 40

AF+ Sd: 5,28% 4,33% 3,09% 6927139,97 7,35
T-: 15,06 14,49 9,86 -8,42 -22,54
M : 13,38% 32,26% 75,91% 22693365,67 35

MB+ Sd: 1,78% 4,07% 3,05% 27640084,2 15,34
T-: 23,86 5,56 7,98 0,59 -3,91

Table C.7: GA vs MAs endowed with AF+ and MB+ (2)
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Data Local search Measure Fitness Validation Validation CPU (s) # Attrib.
M : 38,59% 61,50% 87,55% 79843700,29 47,14

- Sd: 4,42% 3,47% 1,30% 12116726,59 2,48
(GA only) T-: - - - - -

M : 50,81% 68,28% 88,64% 45985386,25 34
14 Tumors AF+ Sd: 3,77% 5,55% 2,06% 13892955,99 10,01

T-: 80,61 10,56 6,39 -7,2 -11,99
M : 48,24% 66,35% 86,94% 54729945 36,86

MB+ Sd: 2,85% 1,86% 1,64% 28889404,02 12,32
T-: 27,67 7,54 -1,76 -8,33 -4,74
M : 0,00% 48,80% 59,60% 4025836 42,67

- Sd: 0,00% 11,36% 10,86% 860787,07 5,16
(GA only) T-: - - - - -

M : 4,27% 40,80% 57,69% 2439530,78 21,56
Brain Tumor2 AF+ Sd: 4,05% 9,70% 5,98% 1313326,49 7,67

T-: 9 -9,98 -1,97 -5,84 -19,51
M : 5,77% 42,20% 59,40% 1486722,38 16,13

MB+ Sd: 6,82% 6,19% 6,16% 1741569,24 15,42
T-: 8 -7,22 -0,85 -11,71 -22,62
M : 0,00% 29,02% 34,84% 6442101,5 33,83

- Sd: 0,00% 6,65% 9,66% 2353803,75 7,19
(GA only) T-: - - - - -

M : 0,85% 33,20% 39,78% 5738869,67 23,89
Prostate Tumor AF+ Sd: 1,70% 5,38% 5,62% 4748139,33 10,15

T-: 9 3,46 2,78 -1,72 -10,7
M : 0,43% 20,70% 22,83% 853289,78 9,56

MB+ Sd: 1,28% 2,62% 7,66% 897978,41 7,13
T-: 9 -12,13 -7,61 -71,05 -33,2
M : 0,00% 7,49% 17,96% 2955623,82 16,18

- Sd: 0,00% 6,24% 4,23% 1490486,33 7,65
(GA only) T-: - - - - -

M : 0,00% 10,68% 19,77% 948803,88 16,25
Lymphoma AF+ Sd: 0,00% 5,25% 4,50% 728389,16 8,38

T-: - 1,92 6,73 -11,82 0,16
M : 0,00% 16,52% 20,15% 245424,25 2,88

MB+ Sd: 0,00% 2,76% 2,55% 139098,44 1,46
T-: - 6,12 6,3 -15,48 -51,61
M : 60,87% 96,11% 98,56% 33369485,25 41

- Sd: 3,55% 2,28% 0,99% 6075771,06 7,44
(GA only) T-: - - - - -

M : 66,67% 98,67% 99,11% 19615130,67 23,67
Challenge 2004 AF+ Sd: 2,51% 1,18% 0,77% 13882130,36 10,6

T-: 12 2,98 3,27 -7,04 -4,44
M : 68,12% 99,85% 99,26% 12717393,33 3,67

MB+ Sd: 6,64% 0,26% 0,68% 4141638,3 0,58
T-: 15 4,64 7,26 -22,6 -36,44

Table C.8: GA vs MA endowed with AF+ and MB+ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,22% 45,05% 47,45% 1306510,89 15,33

MBEGA Sd: 2,11% 3,43% 6,95% 657546,55 12,52
T-: - - - - -
M : 11,11% 49,49% 46,48% 1054957 11,56

AF+ Sd: 5,21% 5,08% 5,71% 1002712,06 6,86
T-: 8,83 4,37 -0,58 -2,6 -2,22
M : 3,64% 48,22% 48,26% 830939,18 3,82

MB+ Sd: 2,16% 6,63% 4,24% 264272,02 0,87
T-: 7,06 9,45 0,5 -7,47 -7,76

CNS M : 2,22% 41,19% 40,44% 776660,44 16,44
MBEGA Sd: 3,33% 6,85% 5,35% 579215,05 16,86

T-: - - - - -
M : 4,24% 48,06% 41,58% 884081,91 15,18

AF+ Sd: 6,16% 5,12% 6,13% 623905,41 7,11
T-: 6,1 13,34 1,11 1,5 -0,83
M : 0,83% 44,25% 41,67% 172647,13 3,75

MB+ Sd: 2,36% 7,00% 6,52% 43401,1 1,91
T-: -5,18 5,33 3,86 -9,63 -8,48

Colon M : 0,78% 23,47% 28,79% 769904,38 10,13
MBEGA Sd: 2,21% 3,10% 8,53% 631281 13,17

T-: - - - - -
M : 6,73% 24,32% 34,09% 1443520,77 26,08

AF+ Sd: 4,75% 5,06% 7,36% 927548,22 12,31
T-: 13,09 1,98 4,86 6,68 13,01
M : 3,75% 22,71% 30,77% 145156,1 3,2

MB+ Sd: 6,04% 9,33% 10,51% 56091,5 1,14
T-: 7,66 -0,85 2,5 -8,4 -6,77

Leukemia3C M : 0,00% 15,56% 15,76% 2073395,38 4,13
MBEGA Sd: 0,00% 8,59% 2,74% 445394,47 0,99

T-: - - - - -
M : 2,02% 37,98% 42,83% 3607465 24

AF+ Sd: 2,80% 8,91% 10,74% 2938350,12 11,45
T-: 11 16,9 40,44 15,79 31,22

MB+ M : 1,85% 15,74% 24,72% 272075,33 4
Sd: 2,87% 14,75% 20,34% 89346,79 0,63
T-: 6 0,06 2,42 -76,56 -8

Table C.9: MBEGA vs MAs respectively endowed with AF+and MB+ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 14,26% 23,43% 6746779,67 28,33

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,45 15,4
T-: - - - - -
M : 1,23% 14,75% 27,00% 20555165,5 30,88

AF+ Sd: 1,46% 4,99% 2,70% 14096615,09 8,43
T-: 13,33 1,5 40,37 7,45 1,19
M : 1,96% 19,73% 26,31% 6326244,5 16,75

MB+ Sd: 1,05% 3,40% 3,72% 2900852,41 2,71
T-: 22,27 5,25 -0,78 -10,6

MLL M : 0,00% 20,71% 19,52% 1924337,86 3,71
MBEGA Sd: 0,00% 7,93% 6,80% 670178,67 0,49

T-: - - - - -
M : 0,00% 30,00% 38,40% 4015421,88 22,38

AF+ Sd: 0,00% 7,81% 10,66% 2494680,08 7,13
T-: - 4,04 8,74 7,12 20,22
M : 0,00% 23,96% 32,99% 924702,88 9,13

MB+ Sd: 0,00% 11,31% 14,12% 1046838,27 6,24
T-: - 1,78 4,39 -3,24 3,36

Orarian M : 0,00% 2,22% 4,69% 4376831,29 2
MBEGA Sd: 0,00% 0,56% 0,43% 1098440,94 0

T-: - - - - -
M : 0,00% 2,59% 16,13% 29587089,5 31,5

AF+ Sd: 0,00% 2,10% 11,00% 18545416,25 8,87
T-: - 2,61 10,34 45,83 39,33
M : 0,00% 2,74% 5,74% 1154254,29 6,14

MB+ Sd: 0,00% 1,99% 2,82% 560388,95 3,85
T-: - 3,72 10,5 -43,32 5,97

SRBCT M : 0,00% 11,29% 32,54% 2253283,43 5,71
MBEGA Sd: 0,00% 4,43% 5,64% 502583,62 2,36

T-: - - - - -
M : 2,16% 19,11% 48,78% 3167339,45 33,36

AF+ Sd: 3,27% 6,31% 7,12% 1235739,39 7,74
T-: 9,17 9,46 25,09 5,42 109,88
M : 1,19% 23,17% 40,30% 706259,75 11,63

MB+ Sd: 3,37% 7,20% 10,50% 409180,35 7,63
T-: 8 15,09 10,6 -18,48 6,84

9 Tumors M : 21,11% 75,22% 95,22% 2831195,5 38,67
MBEGA Sd: 2,72% 7,99% 1,66% 514528,93 17,11

T-: - - - - -
M : 34,07% 79,56% 93,70% 4218204,33 27,67

AF+ Sd: 4,01% 9,19% 1,86% 2932298,71 10,93
T-: 18,95 5,05 -5,57 3,78 -4,39
M : 29,33% 78,80% 94,20% 5856291,9 34,5

MB+ Sd: 5,62% 7,52% 1,89% 3415222,97 8,71
T-: 25,33 3,14 -3,41 7,44 -2,64

Table C.10: MBEGA vs MAs respectively endowed with AF+and MB+(2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors M : 3,64% 23,22% 74,25% 10439972,6 49

MBEGA Sd: 2,03% 3,59% 0,92% 2127251,91 2,83
T-: - - - - -
M : 14,77% 33,66% 78,05% 16282683,5 40

AF+ Sd: 5,28% 4,33% 3,09% 6927139,97 7,35
T-: 18,67 11,57 9,93 9,63 -24,96
M : 13,38% 32,26% 75,91% 22693365,67 35

MB+ Sd: 1,78% 4,07% 3,05% 27640084,2 15,34
T-: 29,15 8,35 8,73 5,86 -4,49

14 Tumors M : 38,40% 61,93% 85,84% 32426149,29 47,43
MBEGA Sd: 3,74% 3,48% 1,48% 3598869,19 4,69

T-: - - - - -
M : 51,08% 68,48% 88,16% 40369678,17 31,67

AF+ Sd: 4,24% 6,54% 2,03% 6542676 10,67
T-: 17,31 226,19 5,13 9,49 -16,52
M : 48,24% 66,35% 86,94% 54729945 36,86

MB+ Sd: 2,85% 1,86% 1,64% 28889404,02 12,32
T-: 17,34 127,78 3,58 15,1 -4,68

Brain Tumor2 M : 0,00% 51,60% 59,73% 966079,67 10,67
MBEGA Sd: 0,00% 15,88% 5,25% 424005,49 7

T-: - - - - -
M : 4,27% 40,80% 57,69% 2439530,78 21,56

AF+ Sd: 4,05% 9,70% 5,98% 1313326,49 7,67
T-: 9 -6,77 -1,36 7,63 11,46
M : 5,77% 42,20% 59,40% 1486722,38 16,13

MB+ Sd: 6,82% 6,19% 6,16% 1741569,24 15,42
T-: 8 -5,68 -0,28 5,09 5,19

Prostate Tumor M : 0,00% 26,39% 40,11% 2119086,86 27
MBEGA Sd: 0,00% 6,07% 7,89% 420355,88 14,73

T-: - - - - -
M : 1,28% 32,22% 41,24% 6103394,17 24,17

AF+ Sd: 1,99% 4,20% 2,01% 5524555,19 12,02
T-: 6 14,78 1,26 4,25 -0,79
M : 0,55% 21,06% 23,81% 921320,29 9,14

MB+ Sd: 1,45% 2,89% 8,55% 1017983,82 7,4
T-: 7 -11,93 -11,35 -13,95 -8,25

Table C.11: MBEGA vs MAs respectively endowed with AF+and MB+ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,13% 45,19% 50,14% 5086055,47 38,33

- Sd: 2,56% 7,28% 4,87% 1719792,54 6,65
(only GA) T-: - - - - -

M : 4,22% 42,18% 47,55% 1259323 14,44
FLS+ Sd: 3,49% 7,99% 5,94% 577700,54 8,52

T-: 4,58 -4,01 -19,22 -46,71 -34,5
M : 4,00% 43,44% 49,22% 2046134,93 12,27

IFLS+ Sd: 3,70% 9,37% 6,18% 1164253,83 6,49
T-: 3,94 -2,47 -2,02 -31,74 -27,07

CNS M : 0,00% 39,23% 43,95% 2951100,54 34,69
- Sd: 0,00% 10,70% 5,11% 1517342,83 11,47

(only GA) T-: - - - - -
M : 1,25% 43,79% 44,25% 415207,13 10,69

FLS+ Sd: 2,69% 10,41% 6,77% 199190,95 4,48
T-: 16 8,68 1,57 -105,48 -234,26
M : 1,25% 45,67% 42,08% 675038,06 12,06

IFLS+ Sd: 2,69% 10,65% 5,80% 564074,31 6,38
T-: 16 28,85 -9,42 -58,63 -68,16

Colon M : 1,92% 27,79% 32,66% 2154451,46 28,15
- Sd: 3,00% 4,83% 5,79% 1209434,43 10,54

(only GA) T-: - - - - -
M : 7,42% 27,98% 33,79% 381501,94 11,31

FLS+ Sd: 5,21% 6,65% 7,16% 196739,94 6,41
T-: 16,13 0,44 2,27 -12,96 -33,33
M : 4,91% 23,50% 30,37% 385083,36 11,5

IFLS+ Sd: 4,37% 4,41% 8,36% 183139,97 4,83
T-: 6,18 -12,45 -1,91 -12,9 -36,92

Leukemia3C M : 0,00% 19,96% 27,78% 4745137,5 38,64
- Sd: 0,00% 7,04% 6,89% 1778242,67 7,62

(only GA) T-: - - - - -
M : 0,98% 25,65% 32,81% 1352039,24 23,12

FLS+ Sd: 2,18% 13,91% 12,68% 789451,7 10,73
T-: 3,64 6,7 7,04 -20,07 -22,48
M : 0,40% 26,39% 29,37% 1954565,43 18,93

IFLS+ Sd: 1,48% 12,71% 16,59% 989121,03 7,02
T-: 14 3,41 0,71 -14 -19,94

Leukemia4C M : 0,00% 33,85% 39,44% 4781085,5 40,5
- Sd: 0,00% 9,82% 8,04% 1428019,32 4,85

(only GA) T-: - - - - -
M : 0,62% 36,11% 36,17% 1352848,39 22,94

FLS+ Sd: 1,80% 9,90% 9,11% 464380,8 6,17
T-: 18 1,87 -2,91 -97,65 -70,37
M : 0,93% 38,29% 38,80% 2959564,42 25

IFLS+ Sd: 3,21% 7,22% 8,99% 1403044,17 4,75
T-: 12 3,79 -0,45 -22,93 -114,19

Table C.12: GA vs MAs respectively endowed with FLS+and IFLS+ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 15,03% 26,98% 18327174,77 46,62

- Sd: 0,00% 3,25% 2,13% 7173803,05 2,75
(only GA) T-: - - - - -

M : 2,17% 15,58% 25,74% 9139586,16 38,16
FLS+ Sd: 1,45% 4,89% 2,69% 3245476,14 7,83

T-: 199,5 3,28 -6,1 -76,76 -25,03
M : 2,38% 16,31% 27,58% 12407942,43 34,86

IFLS+ Sd: 2,06% 3,62% 1,89% 5616958,13 10,17
T-: 79,33 11,31 2,38 -12,64 -29,32

MLL M : 0,00% 25,69% 34,40% 4737424,25 34
- Sd: 0,00% 8,64% 6,22% 2256399,3 10,73

(only GA) T-: - - - - -
M : 0,28% 24,36% 28,72% 1890214,2 26,95

FLS+ Sd: 1,24% 8,42% 8,58% 923936,3 8,57
T-: 20 -2,81 -7,27 -11,01 -8,79
M : 0,00% 25,14% 28,16% 2411450,38 21,31

IFLS+ Sd: 0,00% 7,52% 9,55% 1973694,51 8,17
T-: - -1,45 -17,37 -8,93 -21,58

Orarian M : 0,00% 3,08% 19,50% 13669924,58 26,67
- Sd: 0,00% 2,40% 10,12% 6257542,88 7,99
(only GA) T-: - - - - -

M : 0,00% 4,07% 25,14% 4266492,61 21,72
FLS+ Sd: 0,00% 2,72% 8,42% 2391928,59 9

T-: 4,81 5,43 -50,75 -5,57
M : 0,00% 3,10% 16,90% 4922699 24,56

IFLS+ Sd: 0,00% 1,92% 11,13% 2185573,11 8,68
T-: 0,11 -2,83 -29,81 -1,98

SRBCT M : 0,00% 13,30% 43,86% 7344262,55 41,45
- Sd: 0,00% 7,72% 5,68% 3084313,63 6,71

(only GA) T-: - - - - -
M : 0,00% 21,52% 45,88% 2009761 24,59

FLS+ Sd: 0,00% 12,10% 9,91% 962201,27 7,17
T-: 7,18 2,37 -23,79 -18,72
M : 0,00% 17,01% 44,30% 2656986 26,5

IFLS+ Sd: 0,00% 7,27% 8,16% 1091701,62 6,98
T-: 13,69 0,54 -21,18 -14,8

Table C.13: GA vs MAs respectively endowed with FLS+and IFLS+ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
9 Tumors M : 20,00% 77,17% 94,39% 5829173,33 41,17

- Sd: 4,02% 9,07% 2,10% 2471650,62 7,03
(only GA) T-: - - - - -

M : 28,42% 77,51% 93,89% 2266225,84 26,21
FLS+ Sd: 7,96% 7,62% 1,86% 614236,75 8,2

T-: 11,85 0,82 -2,48 -13,03 -12,83
M : 27,08% 79,42% 93,33% 6142094,69 30

IFLS+ Sd: 4,53% 6,48% 1,52% 3554311,54 9,72
T-: 9,97 12,06 -4,07 0,89 -11,71

11 Tumors M : 5,99% 28,36% 74,04% 21449781,82 47,18
- Sd: 1,53% 4,60% 4,19% 9370248,49 2,04

(only GA) T-: - - - - -
M : 14,20% 30,06% 74,36% 13445854,35 45,4

FLS+ Sd: 4,29% 4,87% 3,98% 2722913,13 5,66
T-: 24,22 7,68 1,41 -26,2 -2,83
M : 11,06% 28,90% 74,04% 30548785,6 42,47

IFLS+ Sd: 4,85% 5,58% 3,14% 20144408,67 7,52
T-: 16,25 4,14 -0,03 5,58 -6,11

14 Tumors M : 38,59% 61,50% 87,55% 79843700,29 47,14
- Sd: 4,42% 3,47% 1,30% 12116726,59 2,48

(Only GA) T-: - - - - -
M : 48,33% 63,01% 87,27% 40237743 43,74

FLS+ Sd: 5,29% 2,63% 1,47% 8446464,22 7,69
T-: 128,7 2,32 -1,66 -14,47 -7,56
M : 47,40% 64,85% 87,80% 68516459,81 43

IFLS+ Sd: 3,88% 3,54% 0,86% 24362428,87 7
T-: 42,02 5,04 1,43 -3,63 -8,06

Brain Tumor2 M : 0,00% 48,80% 59,60% 4025836 42,67
- Sd: 0,00% 11,36% 10,86% 860787,07 5,16

(only GA) T-: - - - - -
M : 4,86% 50,11% 59,71% 1464280,11 25,84

FLS+ Sd: 4,59% 7,52% 7,60% 748811,33 9,47
T-: 32,57 1,92 0,63 -13 -16,64
M : 4,73% 45,05% 58,95% 1648181,08 17,46

IFLS+ Sd: 3,90% 11,57% 8,31% 1220942,38 6,49
T-: 20,8 -2,52 -3,62 -12,1 -28,11

Prostate Tumor M : 0,00% 29,02% 34,84% 6442101,5 33,83
- Sd: 0,00% 6,65% 9,66% 2353803,75 7,19

(only GA) T-: - - - - -
21 M : 0,43% 24,12% 31,66% 1364486 18,78

FLS+ Sd: 1,24% 7,30% 10,34% 712767,66 6,94
T-: 18 -6,75 -1,99 -83,06 -25

23 M : 1,10% 25,46% 33,19% 2753627,43 19,07
Sd: 1,80% 8,07% 11,26% 3229070,64 7,62
T-: 5,6 -4,41 -0,92 -37,56 -27,75

Table C.14: GA vs MAs respectively endowed with FLS+and IFLS+ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU # Attrib
Lymphoma GA M : 0,00% 7,49% 17,96% 2955623,82 16,18

Sd: 0,00% 6,24% 4,23% 1490486,33 7,65
T-: - - - - -

21 M : 0,00% 12,08% 22,50% 682270,63 14,44
Sd: 0,00% 5,36% 4,77% 319649,76 4,72
T-: 2,92 6,69 -13,39 -3,6

23 M : 0,00% 12,41% 21,89% 774349,94 13,47
Sd: 0,00% 7,44% 6,26% 291551,59 4,56
T-: 3,32 11,16 -12,84 -24,24

Challenge 2004 GA M : 60,87% 96,11% 98,56% 33369485,25 41
Sd: 3,55% 2,28% 0,99% 6075771,06 7,44
T-: - - - - -

21 M : 66,59% 97,01% 98,81% 12560270,26 23,16
Sd: 6,16% 2,44% 0,57% 3585413,42 8,7
T-: 14,84 1,09 2,73 -53,48 -15,73

23 M : 62,50% 94,39% 98,89% 65205452,63 26,38
Sd: 5,66% 2,70% 0,67% 39601039,45 9,78
T-: 4,8 -2,05 3,79 4,99 -11,26

Table C.15: MBEGA vs MAs respectively endowed with FLS+and IFLS+



188

Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
M : 2,22% 45,05% 47,45% 1306510,89 15,33

MBEGA Sd: 2,11% 3,43% 6,95% 657546,55 12,52
T-: - - - - -
M : 4,22% 42,18% 47,55% 1259323 14,44

Breast FLS+ Sd: 3,49% 7,99% 5,94% 577700,54 8,52
T-: 6,52 -6,84 0,06 -0,74 -0,59
M : 4,00% 43,44% 49,22% 2046134,93 12,27

IFLS+ Sd: 3,70% 9,37% 6,18% 1164253,83 6,49
T-: 5,36 -4,84 1,11 9,17 -1,86
M : 2,22% 41,19% 40,44% 776660,44 16,44

MBEGA Sd: 3,33% 6,85% 5,35% 579215,05 16,86
T-: - - - - -
M : 1,25% 43,79% 44,25% 415207,13 10,69

CNS FLS+ Sd: 2,69% 10,41% 6,77% 199190,95 4,48
T-: -3,75 3,73 23,07 -5,79 -3,85
M : 1,25% 45,67% 42,08% 675038,06 12,06

IFLS+ Sd: 2,69% 10,65% 5,80% 564074,31 6,38
T-: -3,75 8,74 9,53 -1,46 -2,87
M : 0,78% 23,47% 28,79% 769904,38 10,13

MBEGA Sd: 2,21% 3,10% 8,53% 631281 13,17
T-: - - - - -
M : 7,42% 27,98% 33,79% 381501,94 11,31

Colon FLS+ Sd: 5,21% 6,65% 7,16% 196739,94 6,41
T-: 54,4 11,84 5,88 -5,24 1,14
M : 4,91% 23,50% 30,37% 385083,36 11,5

IFLS+ Sd: 4,37% 4,41% 8,36% 183139,97 4,83
T-: 11,34 0,13 1,14 -5,15 1,35
M : 0,00% 15,56% 15,76% 2073395,38 4,13

MBEGA Sd: 0,00% 8,59% 2,74% 445394,47 0,99
T-: - - - -
M : 0,98% 25,65% 32,81% 1352039,24 23,12

Leukemia3C FLS+ Sd: 2,18% 13,91% 12,68% 789451,7 10,73
T-: 3,64 8,58 28,41 -31,49 350,39
M : 0,40% 26,39% 29,37% 1954565,43 18,93

IFLS+ Sd: 1,48% 12,71% 16,59% 989121,03 7,02
T-: 14 5,28 6,2 -1,1 20,87
M : 0,00% 28,33% 33,89% 2055455 15,17

MBEGA Sd: 0,00% 12,12% 14,65% 748936,92 12,16
T-: - - - 0
M : 0,62% 36,11% 36,17% 1352848,39 22,94

Leukemia4C FLS+ Sd: 1,80% 9,90% 9,11% 464380,8 6,17
T-: 18 3,6 0,98 -17,38 4,15
M : 0,93% 38,29% 38,80% 2959564,42 25

IFLS+ Sd: 3,21% 7,22% 8,99% 1403044,17 4,75
T-: 12 4,66 1,97 11,04 5,28

Table C.16: MBEGA vs FLS+and IFLS+ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
M : 0,00% 14,26% 23,43% 6746779,67 28,33

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,45 15,4
T-: - - - - -
M : 2,17% 15,58% 25,74% 9139586,16 38,16

Lung FLS+ Sd: 1,45% 4,89% 2,69% 3245476,14 7,83
T-: 199,5 4,68 17,96 8,94 9,01
M : 2,38% 16,31% 27,58% 12407942,43 34,86

IFLS+ Sd: 2,06% 3,62% 1,89% 5616958,13 10,17
T-: 79,33 8,04 20,72 10,76 5,87
M : 0,00% 20,71% 19,52% 1924337,86 3,71

MBEGA Sd: 0,00% 7,93% 6,80% 670178,67 0,49
T-: - - - - -
M : 0,28% 24,36% 28,72% 1890214,2 26,95

MLL FLS+ Sd: 1,24% 8,42% 8,58% 923936,3 8,57
T-: 20 5,67 8,46 -0,45 29,1
M : 0,00% 25,14% 28,16% 2411450,38 21,31

IFLS+ Sd: 0,00% 7,52% 9,55% 1973694,51 8,17
T-: 7,64 10,31 6,04 30,16
M : 0,00% 2,22% 4,69% 4376831,29 2

MBEGA Sd: 0,00% 0,56% 0,43% 1098440,94 0
T-: - - -
M : 0,00% 4,07% 25,14% 4266492,61 21,72

ovarian FLS+ Sd: 0,00% 2,72% 8,42% 2391928,59 9
T-: 8,73 27,13 -1,65 38,26
M : 0,00% 3,10% 16,90% 4922699 24,56

IFLS+ Sd: 0,00% 1,92% 11,13% 2185573,11 8,68
T-: 6,67 21,37 2,3 29,03
M : 0,00% 11,29% 32,54% 2253283,43 5,71

MBEGA Sd: 0,00% 4,43% 5,64% 502583,62 2,36
T-: - - - - -
M : 0,00% 21,52% 45,88% 2009761 24,59

SRBCT FLS+ Sd: 0,00% 12,10% 9,91% 962201,27 7,17
T-: 8,53 14,74 -3,08 51,79
M : 0,00% 17,01% 44,30% 2656986 26,5

IFLS+ Sd: 0,00% 7,27% 8,16% 1091701,62 6,98
T-: 12,74 13,59 5,75 35,53
M : 21,11% 75,22% 95,22% 2831195,5 38,67

MBEGA Sd: 2,72% 7,99% 1,66% 514528,93 17,11
T-: - - - - -
M : 28,42% 77,51% 93,89% 2266225,84 26,21

9 Tumors FLS+ Sd: 7,96% 7,62% 1,86% 614236,75 8,2
T-: 15,22 2,6 -6,51 -8,88 -7,12
M : 27,08% 79,42% 93,33% 6142094,69 30

IFLS+ Sd: 4,53% 6,48% 1,52% 3554311,54 9,72
T-: 12,45 5,26 -7,18 14,3 -5,36

Table C.17: MBEGA vs FLS+and IFLS+ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib
M : 3,64% 23,22% 74,25% 10439972,6 49

MBEGA Sd: 2,03% 3,59% 0,92% 2127251,91 2,83
T-: - - - - -
M : 14,20% 30,06% 74,36% 13445854,35 45,4

11 Tumors FLS+ Sd: 4,29% 4,87% 3,98% 2722913,13 5,66
T-: 29,23 8,01 0,6 10,3 -5,53
M : 11,06% 28,90% 74,04% 30548785,6 42,47

IFLS+ Sd: 4,85% 5,58% 3,14% 20144408,67 7,52
T-: 22,08 6,81 -1,49 12,35 -8,27
M : 38,40% 61,93% 85,84% 32426149,29 47,43

MBEGA Sd: 3,74% 3,48% 1,48% 3598869,19 4,69
T-: - - - - -
M : 48,33% 63,01% 87,27% 40237743 43,74

14 Tumors FLS+ Sd: 5,29% 2,63% 1,47% 8446464,22 7,69
T-: 21,86 12,28 42,64 10,19 -4,75
M : 47,40% 64,85% 87,80% 68516459,81 43

IFLS+ Sd: 3,88% 3,54% 0,86% 24362428,87 7
T-: 18,21 17,37 44,29 21,33 -5,44
M : 0,00% 51,60% 59,73% 966079,67 10,67

MBEGA Sd: 0,00% 15,88% 5,25% 424005,49 7
T-: - - - -
M : 4,86% 50,11% 59,71% 1464280,11 25,84

Brain Tumor2 FLS+ Sd: 4,59% 7,52% 7,60% 748811,33 9,47
T-: 32,57 -0,97 -0,02 10,56 17,48
M : 4,73% 45,05% 58,95% 1648181,08 17,46

IFLS+ Sd: 3,90% 11,57% 8,31% 1220942,38 6,49
T-: 20,8 -3,22 -0,67 15,17 9,28
M : 0,00% 26,39% 40,11% 2119086,86 27

MBEGA Sd: 0,00% 6,07% 7,89% 420355,88 14,73
T-: - - - -
M : 0,43% 24,12% 31,66% 1364486 18,78

Prostate Tumor FLS+ Sd: 1,24% 7,30% 10,34% 712767,66 6,94
T-: 18 -4,62 -8,93 -19,42 -3,8
M : 1,10% 25,46% 33,19% 2753627,43 19,07

IFLS+ Sd: 1,80% 8,07% 11,26% 3229070,64 7,62
T-: 5,6 -1,53 -5,6 7,37 -3,7

Table C.18: MBEGA vs endowed with FLS+and IFLS+ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,13% 45,19% 50,14% 5086055,46 38,33

- Sd: 2,56% 7,28% 4,87% 1719792,53 6,65
(only GA) T-: - - - - -

M : 2,44% 41,37% 44,44% 1195308,66 5,33
MB∗ Sd: 2,01% 6,18% 6,54% 500152,55 3,51

T-: 0,77 -4,71 -67,49 -43,87 -50,20
M : 2,74% 39,06% 42,54% 962519,42 4,31

MB∗(FI) Sd: 1,91% 4,97% 6,95% 374736,11 2,96
T-: 1,44 -6,18 -21,15 -49,41 -52,76

CNS M : 0,00% 39,23% 43,95% 2951100,53 34,69
- Sd: 0,00% 10,70% 5,11% 1517342,83 11,47

(only GA) T-: - - - - -
M : 0,70% 45,05% 40,04% 777555,26 5,89

MB∗ Sd: 2,10% 9,08% 6,19% 309502,8968 4,8292
T-: 19 12,89 -14,79 -80,89 -192,42
M : 1,48% 40,07% 39,59% 723923,83 4,44

MB∗(FI) Sd: 2,85% 7,08% 6,66% 285196,60 3,51
T-: 18 1,63 -24,07 -67,07 -228,08

Colon M : 1,92% 27,79% 32,66% 2154451,46 28,15
- Sd: 3,00% 4,83% 5,79% 1209434,42 10,54

(only GA) T-: - - - - -
M : 1,04% 23,58% 29,50% 478149,88 4,11

MB∗ Sd: 2,40% 6,26% 3,90% 236159,93 2,54
T-: -2,6 -7,43 -9,18 -12,23 -51,73
M : 2,08% 24,62% 29,71% 454105,77 3,66

MB∗(FI) Sd: 3,03% 9,26% 9,16% 304342,90 2,24
T-: 0,45 -6,0057 -2,79 -12,34 -53,33

Leukemia3C M : 0,00% 19,96% 27,78% 4745137,5 38,64
- Sd: 0,00% 7,04% 6,89% 1778242,67 7,62

(only GA) T-: - - - - -
M : 0,00% 13,09% 14,54% 1330103,5 5

MB∗ Sd: 0,00% 4,24% 2,54% 358034,03 2,44
T-: -8,85 -16,97 -20,13 -46,48
M : 0,00% 12,93% 15,08% 1449598,90 3,95

MB∗(FI) Sd: 0,00% 4,99% 2,58% 328167,76 1,13
T-: -9,25 -17,78 -19,50 -50,24

Leukemia4C M : 0,00% 33,85% 39,44% 4781085,5 40,5
- Sd: 0,00% 9,82% 8,04% 1428019,31 4,84

(only GA) T-: - - - - -
M : 0,33% 19,61% 22,97% 1325878,41 6,23

MB∗ Sd: 1,35% 6,89% 6,49% 412608,10 3,47
T-: 17 -25,56 -19,87 -78,95 -202,01
M : 0,00% 20,06% 23,39% 1389635,15 4,9

MB∗(FI) Sd: 0,00% 10,05% 8,35% 399281,07 1,74
T-: -23,5716 -22,049 -209,8386 -295,5951

Table C.19: GA vs MAs endowed with MB∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 15,03% 26,98% 18327174,76 46,61

- Sd: 0,00% 3,25% 2,13% 7173803,05 2,75
(only GA) T-: - - - - -

M : 0,21% 15,58% 20,71% 5445415,73 21,52
MB∗ Sd: 0,62% 3,26% 2,45% 1411729,70 10,76

T-: 19 1,6482 -21,1869 -116,2167 -123,7608
M : 0,28% 15,85% 21,95% 5949881,23 23,23

MB∗(FI) Sd: 0,70% 3,19% 2,07% 1507922,75 10,73
T-: 21 16,47 -27,65 -92,20 -65,15

MLL GA M : 0,00% 25,69% 34,40% 4737424,25 34
Sd: 0,00% 8,64% 6,22% 2256399,29 10,728
T-: - - - - -
M : 0,00% 22,31% 19,97% 1230299,47 2,84

MB∗ Sd: 0,00% 6,10% 4,64% 231286,02 0,68
T-: -7,51 -50,24 -14,11 -372,04
M : 0,00% 18,51% 16,72% 1250757,04 3,2727

MB∗(FI) Sd: 0,00% 4,38% 4,53% 296787,73 0,76
T-: -13,05 -36,36 -14,02 -302,89

Orarian M : 0,00% 3,08% 19,50% 13669924,58 26,66
- Sd: 0,00% 2,40% 10,12% 6257542,87 7,9924

(only GA) T-: - - - - -
M : 0,00% 2,04% 4,81% 3476207,7 2

MB∗ Sd: 0,00% 0,61% 1,03% 879987,11 0
T-: -13,36 -20,49 -56,97 -34,15
M : 0,00% 2,41% 4,86% 3546339,36 2

MB∗(FI) Sd: 0,00% 1,16% 0,62% 1016864,05 0
T-: -8,69 -20,43 -56,6045 -34,15

SRBCT M : 0,00% 13,30% 43,86% 7344262,54 41,45
- Sd: 0,00% 7,72% 5,68% 3084313,63 6,71

(only GA) T-: - - - - -
M : 0,00% 10,42% 35,38% 1879785,21 4,84

MB∗ Sd: 0,00% 3,29% 4,22% 391358,75 1,34
T-: -19,85 -14,80 -24,68 -42,32
M : 0,00% 12,50% 35,19% 1819164,85 4,71

MB∗(FI) Sd: 0,00% 6,67% 5,89% 406342,94 1,05
T-: -6,42 -13,99 -24,78 -42,74

9 Tumors M : 20,00% 77,17% 94,39% 5829173,33 41,16
- Sd: 4,02% 9,07% 2,10% 2471650,62 7,0302

(only GA) T-: - - - - -
M : 19,67% 80,03% 94,03% 1928653,05 24,5

MB∗ Sd: 5,50% 5,85% 1,95% 594225,66 14,54
T-: -0,52 14,84 -1,69 -14,51 -14,94
M : 17,78% 77,50% 94,08% 2041232,29 25,08

MB∗(FI) Sd: 5,08% 6,96% 1,82% 647967,02 13,52
T-: -3,79 0,95 -1,53 -14,21 -15,66

Table C.20: GA vs MAs endowed with MB∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors M : 5,99% 28,36% 74,04% 21449781,81 47,18

- Sd: 1,53% 4,60% 4,19% 9370248,4903 2,0405
(only GA) T-: - - - - -

M : 6,58% 24,16% 70,95% 8805682,78 41,36
MB∗ Sd: 1,99% 3,60% 2,37% 1782312,8593 5,3042

T-: 3,4637 -59,0141 -8,8355 -84,7514 -15,9187
M : 6,39% 25,96% 71,93% 8369241,76 39,90

MB∗(FI) Sd: 2,45% 5,25% 3,50% 1551235,5956 7,674
T-: 2,4909 -27,1815 -12,8801 -106,6688 -32,6841

14 Tumors M : 38,59% 61,50% 87,55% 79843700,2857 47,1429
- Sd: 4,42% 3,47% 1,30% 12116726,5858 2,4785

(only GA) T-: - - - - -
M : 40,12% 64,28% 85,56% 26873119,55 41,77

MB∗ Sd: 3,15% 4,78% 1,53% 5022935,7642 9,8013
T-: 28,4543 3,7365 -11,6149 -19,3963 -11,5219
M : 39,53% 60,58% 85,71% 29345883,12 45,12

MB∗(FI) Sd: 2,68% 3,33% 1,23% 2324851,7162 3,6856
T-: 13,4253 -1,427 -9,6123 -18,4764 -4,1726

Brain Tumor2 M : 0,00% 48,80% 59,60% 4025836 42,6667
- Sd: 0,00% 11,36% 10,86% 860787,0661 5,164

(only GA) T-: - - - - -
M : 0,00% 49,89% 56,34% 800287,71 7,92

MB∗ Sd: 0,00% 11,64% 3,79% 350967,2153 9,778
T-: 0,6014 -15,1711 -16,7898 -37,2674
M : 0,00% 44,49% 55,63% 970313,07 5,15

MB∗(FI) Sd: 0,00% 10,32% 4,66% 340633,0128 3,2621
T-: -5,7862 -9,8447 -15,8014 -41,4874

Prostate Tumor M : 0,00% 29,02% 34,84% 6442101,5 33,8333
- Sd: 0,00% 6,65% 9,66% 2353803,7475 7,1949

(only GA) T-: - - - - -
M : 0,00% 15,51% 16,96% 1341873,06 3,56

MB∗ Sd: 0,00% 4,44% 6,82% 381545,5621 1,1529
T-: -12,4239 -8,486 -75,0699 -57,2284
M : 0,00% 14,66% 18,31% 1465425,93 3,37

MB∗(FI) Sd: 0,00% 4,03% 4,27% 434687,551 1,2583
T-: -19,0374 -10,9153 -59,2398 -56,9604

Lymphoma M : 0,00% 7,49% 17,96% 2955623,8182 16,1818
- Sd: 0,00% 6,24% 4,23% 1490486,3299 7,6527

(only GA) T-: - - - - -
M : 0,00% 16,94% 19,97% 878011,05 1,05

MB∗ Sd: 0,00% 3,41% 4,34% 171691,0113 0,2294
T-: 6,4339 7,2121 -12,2312 -140,771
M : 0,00% 17,69% 20,84% 1041620,52 1

MB∗(FI) Sd: 0,00% 0,56% 3,75% 246454,2847 0
T-: 6,9489 12,7268 -11,2638 -141,3077

Challenge 2004 M : 60,87% 96,11% 98,56% 33369485,25 41
- Sd: 3,55% 2,28% 0,99% 6075771,0639 7,4386

(only GA) T-: - - - - -
M : 58,26% 94,58% 98,84% 9353813 21,1

MB∗ Sd: 3,67% 3,63% 0,37% 1607506,3801 10,461
T-: -10 -1,6352 3,3904 -62,8186 -13,453
M : 59,78% 93,93% 98,74% 10103488,08 25,25

MB∗(FI) Sd: 3,28% 4,21% 0,70% 2371460,8057 12,0614
T-: -4 -2,6346 2,2162 -60,4516 -15,7466

Table C.21: GA vs MAs endowed with MB∗ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,22% 45,05% 47,45% 1306510,8889 15,3333

MBEGA Sd: 2,11% 3,43% 6,95% 657546,5512 12,52
T-: - - - - -
M : 2,44% 41,37% 44,44% 1195308,66 5,33

MB∗ Sd: 2,01% 6,18% 6,54% 500152,553 3,5147
T-: 1,0307 -7,1051 -1,9751 -1,5425 -6,7243
M : 2,74% 39,06% 42,54% 962519,42 4,31

MB∗(FI) Sd: 1,91% 4,97% 6,95% 374736,1127 2,9637
T-: 2,105 -7,7791 -3,1412 -5,2464 -7,4364

CNS M : 2,22% 41,19% 40,44% 776660,4444 16,4444
MBEGA Sd: 3,33% 6,85% 5,35% 579215,0463 16,8605

T-: - - - - -
M : 0,70% 45,05% 40,04% 777555,26 5,89

MB∗ Sd: 2,10% 9,08% 6,19% 309502,8968 4,8292
T-: -6,0901 5,9881 -1,6664 0,0141 -7,0429
M : 1,48% 40,07% 39,59% 723923,83 4,44

MB∗(FI) Sd: 2,85% 7,08% 6,66% 285196,6096 3,5184
T-: -2,846 -1,6039 -5,6084 -0,7934 -8,0196

Colon M : 0,78% 23,47% 28,79% 769904,375 10,125
MBEGA Sd: 2,21% 3,10% 8,53% 631280,9958 13,174

T-: - - - - -
M : 1,04% 23,58% 29,50% 478149,88 4,11

MB∗ Sd: 2,40% 6,26% 3,90% 236159,9377 2,5412
T-: 2,2941 0,2215 0,9221 -3,9128 -5,8823
M : 2,08% 24,62% 29,71% 454105,77 3,66

MB∗(FI) Sd: 3,03% 9,26% 9,16% 304342,9031 2,2492
T-: 8,5983 2,3882 0,7336 -4,1621 -6,3327

Leukemia3C M : 0,00% 15,56% 15,76% 2073395,375 4,125
MBEGA Sd: 0,00% 8,59% 2,74% 445394,4673 0,991

T-: - - - - -
M : 0,00% 13,09% 14,54% 1330103,5 5

MB∗ Sd: 0,00% 4,24% 2,54% 358034,0325 2,4495
T-: -2,1962 -1,8144 -27,9338 3,9278
M : 0,00% 12,93% 15,08% 1449598,90 3,95

MB∗(FI) Sd: 0,00% 4,99% 2,58% 328167,7618 1,1329
T-: -2,3591 -1,1489 -28,1698 -3,4075

Leukemia4C M : 0,00% 28,33% 33,89% 2055455 15,1667
MBEGA Sd: 0,00% 12,12% 14,65% 748936,9207 12,1559

T-: - - - - -
M : 0,33% 19,61% 22,97% 1325878,41 6,23

MB∗ Sd: 1,35% 6,89% 6,49% 412608,1015 3,4736
T-: 17 -4,6571 -4,9471 -15,1593 -4,787
M : 0,00% 20,06% 23,39% 1389635,15 4,9

MB∗(FI) Sd: 0,00% 10,05% 8,35% 399281,0765 1,7442
T-: -4,3981 -4,8375 -25,8736 -5,514

Table C.22: MBEGA vs MAs endowed with MB∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 14,26% 23,43% 6746779,6667 28,3333

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,4482 15,397
T-: - - - - -
M : 0,21% 15,58% 20,71% 5445415,73 21,52

MB∗ Sd: 0,62% 3,26% 2,45% 1411729,7028 10,7619
T-: 19 3,2843 -10,8408 -4,9301 -6,447
M : 0,28% 15,85% 21,95% 5949881,23 23,23

MB∗(FI) Sd: 0,70% 3,19% 2,07% 1507922,7508 10,7327
T-: 21 6,8057 -15,9419 -2,9019 -4,6466

MLL M : 0,00% 20,71% 19,52% 1924337,8571 3,7143
MBEGA Sd: 0,00% 7,93% 6,80% 670178,6692 0,488

T-: - - - - -
M : 0,00% 22,31% 19,97% 1230299,47 2,84

MB∗ Sd: 0,00% 6,10% 4,64% 231286,0228 0,6882
T-: 2,551 0,5521 -34,1451 -20,9388
M : 0,00% 18,51% 16,72% 1250757,04 3,27

MB∗(FI) Sd: 0,00% 4,38% 4,53% 296787,7343 0,7673
T-: -3,1451 -3,1196 -29,0851 -6,2366

Orarian M : 0,00% 2,22% 4,69% 4376831,2857 2
MBEGA Sd: 0,00% 0,56% 0,43% 1098440,9428 0

T-: 0 0 0 -
M : 0,00% 2,04% 4,81% 3476207,7 2

MB∗ Sd: 0,00% 0,61% 1,03% 879987,1143 0
T-: -1,9402 3,5186 -19,5565 -
M : 0,00% 2,41% 4,86% 3546339,36 2

MB∗(FI) Sd: 0,00% 1,16% 0,62% 1016864,0575 0
T-: 2,005 4,7662 -18,1199

SRBCT M : 0,00% 11,29% 32,54% 2253283,4286 5,7143
MBEGA Sd: 0,00% 4,43% 5,64% 502583,6223 2,3604

T-: - - - - -
M : 0,00% 10,42% 35,38% 1879785,21 4,84

MB∗ Sd: 0,00% 3,29% 4,22% 391358,7537 1,3443
T-: -2,2398 4,3806 -5,2944 -3,3114
M : 0,00% 12,50% 35,19% 1819164,85 4,71

MB∗(FI) Sd: 0,00% 6,67% 5,89% 406342,9433 1,0556
T-: 3,1824 3,84 -5,77 -4,077

9 Tumors M : 21,11% 75,22% 95,22% 2831195,5 38,66
MBEGA Sd: 2,72% 7,99% 1,66% 514528,92 17,1075

T-: - - - - -
M : 19,67% 80,03% 94,03% 1928653,05 24,5

MB∗ Sd: 5,50% 5,85% 1,95% 594225,66 14,54
T-: -3,93 6,01 -5,56 -23,45 -8,25
M : 17,78% 77,50% 94,08% 2041232,29 25,08

MB∗(FI) Sd: 5,08% 6,96% 1,82% 647967,02 13,52
T-: -12,72 2,67 -5,59 -43,66 -8,1821

Table C.23: MBEGA vs MAs endowed with MB∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors M : 3,64% 23,22% 74,25% 10439972,6 49

MBEGA Sd: 2,03% 3,59% 0,92% 2127251,9073 2,8284
T-: - - - - -
M : 6,58% 24,16% 70,95% 8805682,78 41,36

MB∗ Sd: 1,99% 3,60% 2,37% 1782312,8593 5,3042
T-: 13,9472 1,1403 -10,2474 -13,7566 -18,9712
M : 6,39% 25,96% 71,93% 8369241,76 39,90

MB∗(FI) Sd: 2,45% 5,25% 3,50% 1551235,5956 7,674
T-: 13,6203 3,2999 -25,7121 -24,9407 -32,56

14 Tumors M : 38,40% 61,93% 85,84% 32426149,2857 47,4286
MBEGA Sd: 3,74% 3,48% 1,48% 3598869,1874 4,6853

T-: - - - - -
M : 40,12% 64,28% 85,56% 26873119,55 41,77

MB∗ Sd: 3,15% 4,78% 1,53% 5022935,7642 9,8013
T-: 3,7968 6,2675 -8,753 -7,4335 -7,1959
M : 39,53% 60,58% 85,71% 29345883,12 45,12

MB∗(FI) Sd: 2,68% 3,33% 1,23% 2324851,7162 3,6856
T-: 2,4836 -25,4624 -1,5049 -4,0812 -2,8937

Brain Tumor2 M : 0,00% 51,60% 59,73% 966079,6667 10,6667
MBEGA Sd: 0,00% 15,88% 5,25% 424005,4887 7,0048

T-: - - - - -
M : 0,00% 49,89% 56,34% 800287,71 7,92

MB∗ Sd: 0,00% 11,64% 3,79% 350967,2153 9,778
T-: -0,7543 -2,8894 -9,1777 -3,5338
M : 0,00% 44,49% 55,63% 970313,07 5,15

MB∗(FI) Sd: 0,00% 10,32% 4,66% 340633,0128 3,2621
T-: -4,5309 -3,3571 0,1487 -7,4399

Prostate Tumor M : 0,00% 26,39% 40,11% 2119086,8571 27
MBEGA Sd: 0,00% 6,07% 7,89% 420355,8836 14,7309

T-: - - - - -
M : 0,00% 15,51% 16,96% 1341873,06 3,56

MB∗ Sd: 0,00% 4,44% 6,82% 381545,5621 1,1529
T-: -11,4862 -13,8723 -15,9023 -10,936
M : 0,00% 14,66% 18,31% 1465425,93 3,37

MB∗(FI) Sd: 0,00% 4,03% 4,27% 434687,551 1,2583
T-: -22,0299 -27,2419 -9,405 -11,0161

Lymphoma M : 0,00% 12,29% 14,81% 1328352 2,8571
MBEGA Sd: 0,00% 2,56% 2,99% 380575,5339 0,378

T-: - - - - -
M : 0,00% 16,94% 19,97% 878011,05 1,05

MB∗ Sd: 0,00% 3,41% 4,34% 171691,0113 0,2294
T-: 111,3392 21,8592 -8,6881 -87,6176
M : 0,00% 17,69% 20,84% 1041620,52 1

MB∗(FI) Sd: 0,00% 0,56% 3,75% 246454,2847 0
T-: 212,9715 35,1661 -5,5095 -91

Table C.24: MBEGA vs MAs endowed with MB∗ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,35% 46,15% 49,78% 4647524,7647 36,5294

- Sd: 2,47% 7,42% 4,89% 2030048,161 8,0477
(only GA) T-: - - - - -

M : 2,00% 44,67% 45,17% 1333514 14,5
FLS∗ Sd: 2,11% 7,52% 5,36% 610227,5602 14,4318

T-: -1,5882 -5,6538 -5,6168 -16,6203 -9,6926
M : 2,55% 37,65% 41,29% 982879,18 8,54

IFLS∗ Sd: 2,02% 6,10% 6,28% 432756,9458 12,6283
T-: 1,1744 -25,707 -18,2188 -19,3461 -31,3389

CNS M : 0,00% 42,67% 44,27% 2819096,5294 33,3529
- Sd: 0,00% 11,91% 5,84% 1436436,1201 11,7789

(only GA) T-: - - - - -
M : 0,00% 49,60% 40,80% 855501,7 19

FLS∗ Sd: 0,00% 4,82% 4,52% 488674,9818 15,42
T-: 10,4742 -6,5834 -18,7466 -9,5828
M : 0,00% 43,94% 39,33% 681142,63 15,18

IFLS∗ Sd: 0,00% 8,45% 5,54% 280565,0892 12,616
T-: 1,8025 -9,3925 -22,4027 -9,3574

Colon M : 2,21% 26,91% 33,32% 1910513,9412 26,5882
- Sd: 3,08% 5,96% 6,26% 1205013,4761 10,7008

(only GA) T-: - - - - -
M : 1,39% 23,94% 28,75% 540645 8,44

FLS∗ Sd: 2,76% 5,71% 8,87% 386287,492 11,4139
T-: -4,0521 -5,0802 -3,4134 -16,516 -24,134
M : 1,88% 27,42% 31,23% 546720,5 4,8

IFLS∗ Sd: 3,02% 8,60% 11,78% 268943,5013 3,4254
T-: -0,7251 0,2995 -0,8616 -13,6359 -45,2702

Leukemia3C M : 0,00% 21,23% 28,54% 4875401,7368 38,5263
- Sd: 0,00% 7,26% 7,82% 1918293,1208 7,9398

(only GA) T-: - - - - -
M : 0,00% 19,35% 20,23% 2049922,91 22,75

FLS∗ Sd: 0,00% 11,95% 12,29% 378502,5758 15,0944
T-: -4,5813 -21,5828 -23,141 -10,0605
M : 0,00% 12,53% 14,95% 1388104,36 8,72

IFLS∗ Sd: 0,00% 6,55% 2,78% 365546,272 11,7055
T-: -32,2099 -24,3926 -29,3285 -72,582

Leukemia4C M : 0,00% 33,54% 40,58% 4838907,0526 41,9474
- Sd: 0,00% 9,16% 7,66% 1583335,4614 5,6517

(only GA) T-: - - - - -
M : 0,00% 33,56% 32,41% 2333865,25 30,41

FLS∗ Sd: 0,00% 8,81% 10,35% 572518,444 16,8871
T-: 0,0244 -13,7828 -19,055 -5,7743
M : 0,00% 15,33% 21,89% 1231547,6 7,5

IFLS∗ Sd: 0,00% 5,12% 3,65% 300043,4306 2,7588
T-: -109,5619 -24,01 -29,4478 -76,6206

Table C.25: GA vs MAs respectively endowed with FLS∗ and IFLS∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 15,32% 26,88% 17129218,9444 46,1111

- Sd: 0,00% 3,74% 1,96% 6676624,4762 3,0076
(only GA) T-: - - - - -

M : 0,53% 15,88% 27,20% 7728295,90 30,27
FLS∗ Sd: 0,92% 3,22% 2,70% 2524027,1574 17,1178

T-: 11 0,8393 2,3605 -28,6974 -7,8199
M : 0,53% 16,40% 22,59% 5892768,09 28

IFLS∗ Sd: 0,92% 3,51% 1,72% 1912886,4127 13,0996
T-: 11 1,8942 -111,346 -112,4203 -366,75

MLL M : 0,00% 22,66% 32,72% 4762235,3158 34,6316
- Sd: 0,00% 8,68% 8,22% 2181348,1554 9,7821

(only GA) T-: - - - - -
M : 0,00% 24,85% 27,78% 1659378,90 9,72

FLS∗ Sd: 0,00% 10,21% 8,64% 436280,5364 11,0643
T-: 3,0063 -4,8921 -61,4583 -157,4055
M : 0,00% 19,49% 18,52% 1323288,41 3,83

IFLS∗ Sd: 0,00% 5,28% 5,54% 379447,7209 0,8348
T-: -4,2911 -48,4295 -89,221 -310,6633

Orarian M : 0,00% 3,40% 19,12% 12696723,3333 24,5
- Sd: 0,00% 2,36% 10,46% 5157035,8265 6,7584

(only GA) T-: - - - - -
M : 0,00% 4,68% 12,71% 4742630,3 9,9

FLS∗ Sd: 0,00% 2,10% 8,69% 802927,2552 9,3268
T-: 14,7361 -12,0306 -15,4832 -44,7172
M : 0,00% 2,50% 4,86% 3703556,54 3

IFLS∗ Sd: 0,00% 1,19% 1,06% 895457,5787 0,7746
T-: -4,6914 -41,0366 -17,7286 -86

SRBCT M : 0,00% 12,85% 44,99% 7476719,9444 41,7222
- Sd: 0,00% 6,34% 7,32% 3298359,6883 5,9092

(only GA) T-: - - - - -
M : 0,00% 16,78% 44,93% 2696851,4 15,8

FLS∗ Sd: 0,00% 7,42% 8,91% 656798,3324 12,9168
T-: 11,1021 -0,0611 -17,4868 -33,9197
M : 0,00% 13,66% 37,92% 1977765,63 6,90
Sd: 0,00% 5,51% 7,92% 314170,8714 2,9818

IFLS∗ T-: 1,3131 -10,6959 -20,2372 -89,3649
9 Tumors M : 20,00% 76,74% 94,32% 6014650,1053 41,1053

- Sd: 3,85% 8,32% 1,85% 2794142,5604 7,5196
(only GA) T-: - - - - -

M : 22,42% 78,18% 93,33% 3177301,72 42,27
FLS∗ Sd: 4,49% 7,21% 2,84% 562579,1609 7,5245

T-: 5,8507 2,4561 -19 -12,3704 1,8657
M : 20,56% 79,39% 93,56% 2376800,5 36,83

IFLS∗ Sd: 5,29% 6,13% 2,04% 487727,1835 18,4136
T-: 1,5697 4,1597 -3,0875 -16,1567 -4,8242

11 Tumors M : 5,74% 27,19% 73,43% 22335377,2105 47,5789
- Sd: 1,76% 4,35% 3,54% 8341713,8785 1,8048

(only GA) T-: - - - - -
M : 7,39% 27,68% 72,45% 10935088,25 46,58

FLS∗ Sd: 2,93% 4,88% 1,61% 1454011,6074 3,4499
T-: 4,8914 1,8622 -4,8423 -18,1639 -17,3537
M : 6,82% 26,48% 73,01% 8521776,16 46,91

IFLS∗ Sd: 2,17% 4,33% 2,65% 1351529,1854 3,6546
T-: 5,4457 -1,1718 -7,7309 -21,236 -2,5596

Table C.26: GA vs MAs respectively endowed with FLS∗ and IFLS∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors M : 39,26% 62,83% 87,26% 74594390,4615 46,3846

- Sd: 3,83% 3,68% 1,11% 17820808,0553 3,9059
(only GA) T-: - - - - -

M : 41,56% 62,13% 85,68% 31305602,9 47,9
FLS∗ Sd: 2,67% 4,18% 1,30% 2811654,1339 0,9944

T-: 7,9956 -2,0152 -7,681 -33,7107 2,0831
M : 40,91% 63,95% 86,57% 25333907,58 45,66

IFLS∗ Sd: 2,90% 2,75% 1,55% 2716144,3819 4,5394
T-: 8,0942 3,1448 -5,3741 -37,9305 -0,8895

Brain Tumor2 M : 0,00% 44,65% 57,31% 3975539,1818 39,6364
- Sd: 0,00% 10,83% 10,01% 1120421,9314 10,8099

(GA only) T-: - - - - -
M : 0,00% 54,67% 63,20% 1182840,88 15,66

FLS∗ Sd: 0,00% 6,54% 5,63% 360827,1869 10,7005
T-: 39,59 4,4369 -35,3786 -18,9393
M : 1,71% 40,44% 55,91% 1101117,77 10

IFLS∗ Sd: 3,39% 10,73% 5,51% 310353,7219 9,4604
T-: 9 -17,0285 -1,1148 -32,3433 -28,88

Prostate Tumor M : 0,00% 27,48% 35,72% 5427461,75 33
- Sd: 0,00% 5,74% 8,72% 2153667,5087 6,396

(only GA) T-: - - - - -
M : 0,00% 23,02% 31,84% 2361803,2 17,1

FLS∗ Sd: 0,00% 7,25% 11,24% 744562,2425 14,0194
T-: -5,0461 -7,8095 -73,5648 -8,7973
M : 0,00% 17,22% 19,43% 1892145,72 4,27

IFLS∗ Sd: 0,00% 5,50% 6,49% 632392,798 1,4206
T-: -30,1973 -31,5264 -61,8562 -104,2823

Lymphoma M : 0,00% 7,84% 18,42% 2970675,6667 18,2
- Sd: 0,00% 5,55% 3,68% 1320242,23 7,6737

(only GA) T-: - - - - -
M : 0,00% 12,48% 18,85% 1309051,1 5,1

FLS∗ Sd: 0,00% 7,92% 4,77% 353752,8195 1,5951
T-: 9,0214 2,7218 -36,8667 -24,3424
M : 0,00% 16,36% 18,79% 1024485,91 2,5

IFLS∗ Sd: 0,00% 6,66% 5,16% 279465,7381 0,7977
T-: 16,6817 0,7049 -178,6872 -34,487

Table C.27: GA vs MAs respectively endowed with FLS∗ and IFLS∗ (3)
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Data Local Search Local Search Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,22% 45,05% 47,45% 1306510,8889 15,3333

MBEGA Sd: 2,11% 3,43% 6,95% 657546,5512 12,52
T-: - - - - -
M : 2,00% 44,67% 45,17% 1333514 14,5

FLS∗ Sd: 2,11% 7,52% 5,36% 610227,5602 14,4318
T-: -0,7905 -1,0688 -1,3237 0,3022 -0,3192
M : 2,55% 37,65% 41,29% 982879,18 8,54

IFLS∗ Sd: 2,02% 6,10% 6,28% 432756,9458 12,6283
T-: 1,3598 -18,1231 -3,8778 -5,0483 -4,3376

CNS M : 2,22% 41,19% 40,44% 776660,4444 16,4444
MBEGA Sd: 3,33% 6,85% 5,35% 579215,0463 16,8605

T-: - - - - -
M : 0,00% 49,60% 40,80% 855501,7 19

FLS∗ Sd: 0,00% 4,82% 4,52% 488674,9818 15,42
T-: -9 11,1884 1,5887 1,0038 1,4653
M : 0,00% 43,94% 39,33% 681142,6364 15,1818

IFLS∗ Sd: 0,00% 8,45% 5,54% 280565,0892 12,616
T-: -9 3,4808 -5,0558 -1,4558 -0,5907

Colon M : 0,78% 23,47% 28,79% 769904,375 10,125
MBEGA Sd: 2,21% 3,10% 8,53% 631280,9958 13,174

T-: - - - - -
M : 1,39% 23,94% 28,75% 540645 8,44

FLS∗ Sd: 2,76% 5,71% 8,87% 386287,492 11,4139
T-: 3,3273 0,7397 -0,0293 -3,0511 -1,4216
M : 1,88% 27,42% 31,23% 546720,5 4,8

IFLS∗ Sd: 3,02% 8,60% 11,78% 268943,5013 3,4254
T-: 2,44 2,2826 0,9585 -2,3833 -5,1626

Leukemia3C M : 0,00% 15,56% 15,76% 2073395,375 4,125
MBEGA Sd: 0,00% 8,59% 2,74% 445394,4673 0,991

T-: - - - - -
M : 0,00% 19,35% 20,23% 2049922,9167 22,75

FLS∗ Sd: 0,00% 11,95% 12,29% 378502,5758 15,0944
T-: 3,2738 6,6822 -0,6475 11,9194
M : 0,00% 12,53% 14,95% 1388104,36 8,72

IFLS∗ Sd: 0,00% 6,55% 2,78% 365546,272 11,7055
T-: -2,7105 -1,0434 -29,3666 11,8388

Leukemia4C M : 0,00% 28,33% 33,89% 2055455 15,1667
MBEGA Sd: 0,00% 12,12% 14,65% 748936,9207 12,1559

T-: - - - - -
M : 0,00% 33,56% 32,41% 2333865,25 30,4167

FLS∗ Sd: 0,00% 8,81% 10,35% 572518,444 16,8871
T-: 2,438 -0,6836 4,8595 5,6553
M : 0,00% 15,33% 21,89% 1231547,6 7,5

IFLS∗ Sd: 0,00% 5,12% 3,65% 300043,4306 2,7588
T-: -7,0195 -5,3933 -25,9768 -4,1061

Table C.28: MBEGA vs MAs respectively endowed with FLS∗ and IFLS∗ (1)
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Data Local Search () Local Search Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 14,26% 23,43% 6746779,6667 28,3333

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,4482 15,397
T-: - - - - -
M : 0,53% 15,88% 27,20% 7728295,9091 30,2727

FLS∗ Sd: 0,92% 3,22% 2,70% 2524027,1574 17,1178
T-: 11 2,6232 23,0867 2,3659 0,8493
M : 0,53% 16,40% 22,59% 5892768,09 28

IFLS∗ Sd: 0,92% 3,51% 1,72% 1912886,4127 13,0996
T-: 11 4,1274 -8,7765 -3,1229 -0,3158

MLL M : 0,00% 20,71% 19,52% 1924337,8571 3,7143
MBEGA Sd: 0,00% 7,93% 6,80% 670178,6692 0,488

T-: - - - - -
M : 0,00% 24,85% 27,78% 1659378,90 9,72

FLS∗ Sd: 0,00% 10,21% 8,64% 436280,5364 11,0643
T-: 7,106 6,3903 -6,9518 37,0616
M : 0,00% 19,49% 18,52% 1323288,41 3,83

IFLS∗ Sd: 0,00% 5,28% 5,54% 379447,7209 0,8348
T-: -2,0543 -1,1734 -30,4602 1,129

Orarian M : 0,00% 2,22% 4,69% 4376831,2857 2
MBEGA Sd: 0,00% 0,56% 0,43% 1098440,9428 0

T-: 0 0 0
M : 0,00% 4,68% 12,71% 4742630,3 9,9

FLS∗ Sd: 0,00% 2,10% 8,69% 802927,2552 9,3268
T-: 19,5432 18,5926 2,5216 37,619
M : 0,00% 2,50% 4,86% 3703556,54 3

IFLS∗ Sd: 0,00% 1,19% 1,06% 895457,5787 0,7746
T-: 1,2938 1,1047 -5,6004

SRBCT M : 0,00% 11,29% 32,54% 2253283,4286 5,7143
MBEGA Sd: 0,00% 4,43% 5,64% 502583,6223 2,3604

T-: - - - - -
M : 0,00% 16,78% 44,93% 2696851,4 15,8

FLS∗ Sd: 0,00% 7,42% 8,91% 656798,3324 12,9168
T-: 12,1859 10,6145 5,5035 13,9545
M : 0,00% 13,66% 37,92% 1977765,63 6,90

IFLS∗ Sd: 0,00% 5,51% 7,92% 314170,8714 2,9818
T-: 3,4904 5,8433 -3,6768 3,9806

9 Tumors M : 21,11% 75,22% 95,22% 2831195,5 38,66
MBEGA Sd: 2,72% 7,99% 1,66% 514528,9278 17,1075

T-: - - - - -
M : 22,42% 78,18% 93,33% 3177301,72 42,27

FLS∗ Sd: 4,49% 7,21% 2,84% 562579,16 7,5245
T-: 4,5617 3,2518 -9,2727 6,9652 2,1765
M : 20,56% 79,39% 93,56% 2376800,5 36,83

IFLS∗ Sd: 5,29% 6,13% 2,04% 487727,1835 18,4136
T-: -2,9104 4,4198 -5,285 -19,2304 -1,035

11 Tumors M : 3,64% 23,22% 74,25% 10439972,6 49
MBEGA Sd: 2,03% 3,59% 0,92% 2127251,9073 2,8284

T-: - - - - -
M : 7,39% 27,68% 72,45% 10935088,25 46,58

FLS∗ Sd: 2,93% 4,88% 1,61% 1454011,6074 3,4499
T-: 9,9197 5,1783 -8,9986 5,6064 -11,7415
M : 6,82% 26,48% 73,01% 8521776,16 46,91

IFLS∗ Sd: 2,17% 4,33% 2,65% 1351529,1854 3,6546
T-: 12,1193 3,1913 -26,3171 -9,9723 -6,3983

Table C.29: MBEGA vs MAs respectively endowed with FLS∗ and IFLS∗ (2)



202

Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors M : 38,40% 61,93% 85,84% 32426149,2857 47,4286

MBEGA Sd: 3,74% 3,48% 1,48% 3598869,1874 4,6853
T-: - - - - -
M : 41,56% 62,13% 85,68% 31305602,9 47,9

FLS∗ Sd: 2,67% 4,18% 1,30% 2811654,1339 0,9944
T-: 6,0645 0,8866 -0,8802 -1,4992 0,6038
M : 40,91% 63,95% 86,57% 25333907,58 45,66

IFLS∗ Sd: 2,90% 2,75% 1,55% 2716144,3819 4,5394
T-: 5,2297 8,3288 7 -9,1846 -2,0596

Brain Tumor2 M : 0,00% 51,60% 59,73% 966079,6667 10,6667
MBEGA Sd: 0,00% 15,88% 5,25% 424005,4887 7,0048

T-: - - - - -
M : 0,00% 54,67% 63,20% 1182840,8889 15,6667

FLS∗ Sd: 0,00% 6,54% 5,63% 360827,1869 10,7005
T-: 1,9907 2,0414 10,5187 3,8631
M : 1,71% 40,44% 55,91% 1101117,7778 10

IFLS∗ Sd: 3,39% 10,73% 5,51% 310353,7219 9,4604
T-: 9 -7,246 -2,3289 2,9525 -0,6281

Prostate Tumor M : 0,00% 26,39% 40,11% 2119086,8571 27
MBEGA Sd: 0,00% 6,07% 7,89% 420355,8836 14,7309

T-: - - - - -
M : 0,00% 23,02% 31,84% 2361803,2 17,1

FLS∗ Sd: 0,00% 7,25% 11,24% 744562,2425 14,0194
T-: -3,6754 -9,1321 4,2816 -3,5457
M : 0,00% 17,22% 19,43% 1892145,72 4,27

IFLS∗ Sd: 0,00% 5,50% 6,49% 632392,798 1,4206
T-: -22,0967 -22,5591 -3,2951 -10,5906

Lymphoma M : 0,00% 12,29% 14,81% 1328352 2,8571
MBEGA Sd: 0,00% 2,56% 2,99% 380575,5339 0,378

T-: - - - - -
M : 0,00% 12,48% 18,85% 1309051,1 5,1

FLS∗ Sd: 0,00% 7,92% 4,77% 353752,8195 1,5951
T-: 0,3737 22,6841 -0,2819 7,7149
M : 0,00% 16,36% 18,79% 1024485,91 2,5

IFLS∗ Sd: 0,00% 6,66% 5,16% 279465,7381 0,7977
T-: 8,0475 7,6143 -5,7671 -7,6977

Table C.30: MBEGA vs MAs respectively endowed with FLS∗ and IFLS∗ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,35% 46,15% 49,78% 4647524,7647 36,5294

- Sd: 2,47% 7,42% 4,89% 2030048,161 8,0477
(only GA) T-: - - - - -

M : 2,50% 40,83% 39,74% 767518,5 3,37
AF ∗ Sd: 2,07% 2,07% 7,59% 198523,0225 1,1877

T-: 0,6968 -21,3451 -18,3461 -20,4848 -44,7335
M : 2,18% 42,20% 46,40% 1771606,54 23,18

BF ∗ Sd: 2,75% 4,29% 7,87% 798072,3754 16,7082
T-: -0,7752 -10,6888 -4,0988 -15,0897 -10,2447

CNS M : 0,00% 42,67% 44,27% 2819096,5294 33,3529
- Sd: 0,00% 11,91% 5,84% 1436436,1201 11,7789

(only GA) T-: - - - - -
M : 2,00% 38,47% 40,07% 717483,1 7,2

AF ∗ Sd: 3,22% 6,13% 5,44% 372142,6251 13,3317
T-: 10 -9,7539 -5,7513 -22,3552 -20,6129
M : 1,21% 41,09% 40,55% 762122,36 17,63

BF ∗ Sd: 2,70% 4,00% 6,12% 287622,6685 11,9271
T-: 11 -3,787 -6,5016 -21,989 -13,0576

Colon M : 2,21% 26,91% 33,32% 1910513,9412 26,5882
- Sd: 3,08% 5,96% 6,26% 1205013,4761 10,7008

(only GA) T-: - - - - -
M : 2,08% 23,73% 25,88% 668997,55 3,33

AF ∗ Sd: 3,12% 9,05% 6,97% 451509,0209 1,6583
T-: -0,4618 -9,1892 -26,8163 -12,4935 -51,9198
M : 3,47% 22,58% 27,46% 612665 9,33

BF ∗ Sd: 3,29% 4,71% 9,18% 377102,3515 11,8427
T-: 3,1111 -49,7886 -5,9986 -15,0021 -32,2066

Leukemia3C M : 0,00% 21,23% 28,54% 4875401,7368 38,5263
- Sd: 0,00% 7,26% 7,82% 1918293,1208 7,9398

(only GA) T-: - - - - -
M : 0,00% 18,64% 18,23% 1984104,36 16,81

AF ∗ Sd: 0,00% 9,88% 3,84% 443160,1701 16,576
T-: -3,3534 -33,0794 -22,2743 -39,8035
M : 0,00% 18,22% 22,39% 2066252,9 18,4

BF ∗ Sd: 0,00% 14,03% 12,25% 619923,2709 13,93
T-: -11,1578 -6,5553 -18,1362 -8,8901

Leukemia4C M : 0,00% 33,54% 40,58% 4838907,0526 41,9474
- Sd: 0,00% 9,16% 7,66% 1583335,4614 5,6517

(only GA) T-: - - - - -
M : 0,00% 17,28% 23,83% 1727720,6 13,5

AF ∗ Sd: 0,00% 6,23% 6,44% 390183,4013 10,5646
T-: -13,1261 -25,3841 -24,0981 -40,9696
M : 0,00% 27,37% 26,62% 2367789,27 33,54

BF ∗ Sd: 0,00% 6,85% 9,67% 925866,8675 15,6548
T-: -5,9442 -16,0442 -20,1165 -3,0899

Table C.31: GA vs MAs respectively endowed with AF ∗ and BF ∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 15,32% 26,88% 17129218,9444 46,1111

- Sd: 0,00% 3,74% 1,96% 6676624,4762 3,0076
(only GA) T-: - - - - -

M : 0,00% 14,10% 21,78% 6257937,8 28,2
AF ∗ Sd: 0,00% 1,94% 3,13% 1277321,3431 10,6019

T-: -3,6656 -36,6858 -204,2192 -95,9604
M : 0,78% 14,69% 25,64% 7284814,1 31,6

BF ∗ Sd: 1,01% 4,00% 2,42% 966277,491 6,5693
T-: 6,6667 -1,2765 -2,765 -104,836 -39,9347

MLL M : 0,00% 22,66% 32,72% 4762235,3158 34,6316
- Sd: 0,00% 8,68% 8,22% 2181348,1554 9,7821

(only GA) T-: - - - - -
M : 0,00% 20,11% 17,06% 1630589,4 5,4

AF ∗ Sd: 0,00% 4,50% 2,55% 564417,6302 1,1738
T-: -3,3484 -26,3499 -79,4004 -206,8226
M : 0,00% 23,82% 20,14% 1915797,62 10,87

BF ∗ Sd: 0,00% 4,47% 7,33% 313542,6983 10,494
T-: 1,3202 -17,6738 -71,6312 -32,3381

Orarian M : 0,00% 3,40% 19,12% 12696723,3333 24,5
- Sd: 0,00% 2,36% 10,46% 5157035,8265 6,7584

T-: - - - - -
M : 0,00% 2,56% 4,50% 4135321,22 4

AF ∗ Sd: 0,00% 1,24% 0,47% 427836,3558 1
T-: -3,9948 -45,8326 -17,2914 -82
M : 0,00% 4,40% 14,27% 4497325,2 7,4

BF ∗ Sd: 0,00% 4,46% 9,35% 1511936,25 4,4771
T-: 23,3 -5,0712 -16,2286 -33,7902

SRBCT M : 0,00% 12,85% 44,99% 7476719,9444 41,7222
- Sd: 0,00% 6,34% 7,32% 3298359,6883 5,9092

(only GA) T-: - - - - -
M : 0,00% 8,13% 32,41% 2263354,33 8,66

AF ∗ Sd: 0,00% 4,44% 6,41% 682208,1547 2,7839
T-: -14,4721 -19,814 -19,1572 -83,7102
M : 0,00% 12,90% 41,84% 2559662,55 9,33

BF ∗ Sd: 0,00% 4,86% 8,16% 492488,8605 3,8079
T-: 0,0526 -11,2893 -18,0685 -47,1038

9 Tumors M : 20,00% 76,74% 94,32% 6014650,1053 41,1053
- Sd: 3,85% 8,32% 1,85% 2794142,5604 7,5196

(only GA) T-: - - - - -
M : 18,67% 74,40% 94,40% 2181853,7 35,6

AF ∗ Sd: 4,22% 10,08% 1,92% 481033,3212 16,6747
T-: -3,5522 -4,7127 0,5008 -16,8575 -1,986
M : 18,18% 73,94% 94,67% 2810649 42,6364

BF ∗ Sd: 4,31% 3,34% 2,35% 373754,2593 4,9452
T-: -4,6877 -5,2858 4,4043 -14,1736 5,3555

11 Tumors M : 5,74% 27,19% 73,43% 22335377,2105 47,5789
- Sd: 1,76% 4,35% 3,54% 8341713,8785 1,8048

(only GA) T-: - - - - -
M : 6,59% 29,20% 74,76% 9120201,7 47,3

AF ∗ Sd: 2,92% 4,63% 2,54% 1049930,1925 1,8886
T-: 4,0014 5,5393 12,0357 -20,503 -1,6151
M : 6,20% 25,89% 72,23% 11407949,18 48

BF ∗ Sd: 1,79% 3,41% 2,41% 1830587,46 3,0984
T-: 2,844 -6,0884 -6,2765 -17,3567 13,8182

Table C.32: GA vs MAs respectively endowed with AF ∗ and BF ∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors M : 39,26% 62,83% 87,26% 74594390,4615 46,3846

- Sd: 3,83% 3,68% 1,11% 17820808,0553 3,9059
(only GA) T-: - - - - -

M : 38,96% 63,45% 88,41% 27580478,77 47,11
AF ∗ Sd: 2,34% 2,86% 2,76% 2424059,0204 3,0185

T-: -1,5809 1,4105 3,2088 -36,228 0,9971
M : 38,70% 61,01% 86,52% 30804245,7 45,4

BF ∗ Sd: 4,01% 2,73% 1,75% 2975937,6218 3,4059
T-: -4,4517 -6,8575 -5,186 -32,2095 -1,0206

Brain Tumor2 M : 0,00% 44,65% 57,31% 3975539,1818 39,6364
- Sd: 0,00% 10,83% 10,01% 1120421,9314 10,8099

(only GA) T-: - - - - -
M : 0,00% 42,70% 59,40% 814440,62 10,5

AF ∗ Sd: 0,00% 12,37% 5,40% 259856,6338 5,757
T-: -0,833 2,6886 -36,3411 -27,6764
M : 0,77% 52,40% 57,36% 1491165,9 26,6

BF ∗ Sd: 2,43% 10,04% 5,39% 446324,1521 16,0638
T-: 10 37,0906 0,0883 -23,3714 -9,1369

Prostate Tumor M : 0,00% 27,48% 35,72% 5427461,75 33
- Sd: 0,00% 5,74% 8,72% 2153667,5087 6,396

(only GA) T-: - - - - -
M : 0,00% 17,98% 17,09% 1790517,28 6

AF ∗ Sd: 0,00% 6,64% 9,53% 1003849,2937 0,8165
T-: -26,1885 -21,7578 -169,4535 -108
M : 0,00% 32,04% 35,97% 2265346,14 13,71

BF ∗ Sd: 0,00% 12,99% 11,84% 471051,8344 11,4705
T-: 3,4123 0,3265 -314,2185 -22,5894

Lymphoma M : 0,00% 7,84% 18,42% 2970675,6667 18,2
- Sd: 0,00% 5,55% 3,68% 1320242,23 7,6737

(only GA) T-: - - - - -
M : 0,00% 18,38% 20,15% 1359312,33 3,08

AF ∗ Sd: 0,00% 3,93% 3,53% 223090,9887 1,4434
T-: 56,8212 9,9187 -53,4512 -33,3417
M : 0,00% 12,66% 19,39% 1447421 6,55

BF ∗ Sd: 0,00% 5,16% 3,48% 302116,4127 5,0525
T-: 61,4429 2,7493 -50,8622 -13,7399

Table C.33: GA vs MAs respectively endowed with AF ∗ and BF ∗ (3)



206

Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,22% 45,05% 47,45% 1306510,8889 15,3333

MBEGA Sd: 2,11% 3,43% 6,95% 657546,5512 12,52
T-: - - - - -
M : 2,50% 40,83% 39,74% 767518,5 3,375

AF ∗ Sd: 2,07% 2,07% 7,59% 198523,0225 1,1877
T-: 1,0199 -12,2007 -4,7745 -8,4141 -8,0607
M : 2,18% 42,20% 46,40% 1771606,5455 23,1818

BF ∗ Sd: 2,75% 4,29% 7,87% 798072,3754 16,7082
T-: -0,1443 -6,4681 -0,6085 6,8939 4,2887

CNS M : 2,22% 41,19% 40,44% 776660,4444 16,4444
MBEGA Sd: 3,33% 6,85% 5,35% 579215,0463 16,8605

T-: - - - - -
M : 2,00% 38,47% 40,07% 717483,1 7,2

BF ∗ Sd: 3,22% 6,13% 5,44% 372142,6251 13,3317
T-: -0,6994 -4,8599 -0,682 -0,9315 -5,9574
M : 1,21% 41,09% 40,55% 762122,3636 17,6364

BF ∗ Sd: 2,70% 4,00% 6,12% 287622,6685 11,9271
T-: -3,7358 -0,1719 0,3186 -0,2314 0,7952

Colon M : 0,78% 23,47% 28,79% 769904,375 10,125
MBEGA Sd: 2,21% 3,10% 8,53% 631280,9958 13,174

T-: - - - - -
M : 2,08% 23,73% 25,88% 668997,5556 3,33

AF ∗ Sd: 3,12% 9,05% 6,97% 451509,0209 1,6583
T-: 5,1827 0,594 -3,6945 -1,0855 -6,6827
M : 3,47% 22,58% 27,46% 612665 9,3333

BF ∗ Sd: 3,29% 4,71% 9,18% 377102,3515 11,8427
T-: 6,7617 -3,1518 -1,09 -1,9888 -0,7483

Leukemia3C M : 0,00% 15,56% 15,76% 2073395,375 4,125
MBEGA Sd: 0,00% 8,59% 2,74% 445394,4673 0,991

T-: - - - - -
M : 0,00% 18,64% 18,23% 1984104,3636 16,8182

AF ∗ Sd: 0,00% 9,88% 3,84% 443160,1701 16,576
T-: 2,3129 3,9229 -1,565 23,9876
M : 0,00% 18,22% 22,39% 2066252,9 18,4

BF ∗ Sd: 0,00% 14,03% 12,25% 619923,2709 13,93
T-: 2,3856 6,102 -0,07 6,3162

Leukemia4C M : 0,00% 28,33% 33,89% 2055455 15,1667
MBEGA Sd: 0,00% 12,12% 14,65% 748936,9207 12,1559

T-: - - - - -
M : 0,00% 17,28% 23,83% 1727720,6 13,5

AF ∗ Sd: 0,00% 6,23% 6,44% 390183,4013 10,5646
T-: -4,9757 -4,5994 -6,3452 -0,8588
M : 0,00% 27,37% 26,62% 2367789,2727 33,5455

BF ∗ Sd: 0,00% 6,85% 9,67% 925866,8675 15,6548
T-: -0,4535 -3,2197 9,4627 5,6243

Table C.34: MBEGA vs MAs respectively endowed with AF ∗ and BF ∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 14,26% 23,43% 6746779,6667 28,3333

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,4482 15,397
T-: - - - - -
M : 0,00% 14,10% 21,78% 6257937,8 28,2

AF ∗ Sd: 0,00% 1,94% 3,13% 1277321,3431 10,6019
T-: -0,652 -10,0502 -1,8798 -0,1245
M : 0,78% 14,69% 25,64% 7284814,1 31,6

BF ∗ Sd: 1,01% 4,00% 2,42% 966277,491 6,5693
T-: 6,6667 0,9943 4,8689 1,983 2,9291

MLL M : 0,00% 20,71% 19,52% 1924337,8571 3,7143
MBEGA Sd: 0,00% 7,93% 6,80% 670178,6692 0,488

T-: - - - - -
M : 0,00% 20,11% 17,06% 1630589,4 5,4

AF ∗ Sd: 0,00% 4,50% 2,55% 564417,6302 1,1738
T-: -0,9673 -2,4666 -13,7062 11,5596
M : 0,00% 23,82% 20,14% 1915797,625 10,875

BF ∗ Sd: 0,00% 4,47% 7,33% 313542,6983 10,494
T-: 4,0802 0,5724 -0,3887 9,7357

Orarian M : 0,00% 2,22% 4,69% 4376831,2857 2
MBEGA Sd: 0,00% 0,56% 0,43% 1098440,9428 0

T-: 0 0 0
M : 0,00% 2,56% 4,50% 4135321,22 4

AF ∗ Sd: 0,00% 1,24% 0,47% 427836,3558 1
T-: 1,4668 -2,9278 -5,0585
M : 0,00% 4,40% 14,27% 4497325,2 7,4

BF ∗ Sd: 0,00% 4,46% 9,35% 1511936,25 4,4771
T-: 21,677 10,5957 1,082 12,2727

SRBCT M : 0,00% 11,29% 32,54% 2253283,4286 5,7143
MBEGA Sd: 0,00% 4,43% 5,64% 502583,6223 2,3604

T-: - - - - -
M : 0,00% 8,13% 32,41% 2263354,3333 8,6667

AF ∗ Sd: 0,00% 4,44% 6,41% 682208,1547 2,7839
T-: -7,3727 -0,1462 0,1318 9,6159
M : 0,00% 12,90% 41,84% 2559662,5556 9,3333

BF ∗ Sd: 0,00% 4,86% 8,16% 492488,8605 3,8079
T-: 1,5085 13,3422 4,0102 5,6442

9 Tumors M : 21,11% 75,22% 95,22% 2831195,5 38,6667
MBEGA Sd: 2,72% 7,99% 1,66% 514528,9278 17,1075

T-: - - - - -
M : 18,67% 74,40% 94,40% 2181853,7 35,6

AF ∗ Sd: 4,22% 10,08% 1,92% 481033,3212 16,6747
T-: -10,7123 -0,9636 -3,1743 -16,4648 -0,968
M : 18,18% 73,94% 94,67% 2810649 42,6364

BF ∗ Sd: 4,31% 3,34% 2,35% 373754,2593 4,9452
T-: -11,8011 -1,4692 -2,614 -0,6627 2,5439

Table C.35: MBEGA vs MAs respectively endowed with AF ∗ and BF ∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors M : 3,64% 23,22% 74,25% 10439972,6 49

MBEGA Sd: 2,03% 3,59% 0,92% 2127251,9073 2,8284
T-: - - - - -
M : 6,59% 29,20% 74,76% 9120201,7 47,3

AF ∗ Sd: 2,92% 4,63% 2,54% 1049930,1925 1,8886
T-: 10,7959 6,6667 4,7293 -7,7077 -6,4765
M : 6,20% 25,89% 72,23% 11407949,1818 48

BF ∗ Sd: 1,79% 3,41% 2,41% 1830587,46 3,0984
T-: 10,8616 3,1581 -10,6729 9,5634 -5

14 Tumors M : 38,40% 61,93% 85,84% 32426149,2857 47,4286
MBEGA Sd: 3,74% 3,48% 1,48% 3598869,1874 4,6853

T-: - - - - -
M : 38,96% 63,45% 88,41% 27580478,77 47,1111

AF ∗ Sd: 2,34% 2,86% 2,76% 2424059,0204 3,0185
T-: 1,1764 4,2875 7,3383 -6,2887 -0,4061
M : 38,70% 61,01% 86,52% 30804245,7 45,4

BF ∗ Sd: 4,01% 2,73% 1,75% 2975937,6218 3,4059
T-: 0,6577 -25,1374 5,5852 -1,8629 -2,0175

Brain Tumor2 M : 0,00% 51,60% 59,73% 966079,6667 10,6667
MBEGA Sd: 0,00% 15,88% 5,25% 424005,4887 7,0048

T-: - - - - -
M : 0,00% 42,70% 59,40% 814440,62 10,5

AF ∗ Sd: 0,00% 12,37% 5,40% 259856,6338 5,757
T-: -3,1836 -0,2537 -3,6148 -0,1533
M : 0,77% 52,40% 57,36% 1491165,9 26,6

BF ∗ Sd: 2,43% 10,04% 5,39% 446324,1521 16,0638
T-: 10 0,5216 -1,9685 7,0847 10,971

Prostate Tumor M : 0,00% 26,39% 40,11% 2119086,8571 27
MBEGA Sd: 0,00% 6,07% 7,89% 420355,8836 14,7309

T-: - - - - -
M : 0,00% 17,98% 17,09% 1790517,28 6

AF ∗ Sd: 0,00% 6,64% 9,53% 1003849,2937 0,8165
T-: -19,3715 -20,1411 -7,4645 -9,8
M : 0,00% 32,04% 35,97% 2265346,14 13,71

BF ∗ Sd: 0,00% 12,99% 11,84% 471051,8344 11,4705
T-: 4,1676 -3,8694 3,6817 -5,7938

Lymphoma M : 0,00% 12,29% 14,81% 1328352 2,8571
MBEGA Sd: 0,00% 2,56% 2,99% 380575,5339 0,378

T-: - - - - -
M : 0,00% 18,38% 20,15% 1359312,3333 3,0833

AF ∗ Sd: 0,00% 3,93% 3,53% 223090,9887 1,4434
T-: 35,7872 27,4982 0,5184 10,4925
M : 0,00% 12,66% 19,39% 1447421 6,5556

BF ∗ Sd: 0,00% 5,16% 3,48% 302116,4127 5,0525
T-: 14,1449 12,6359 1,9972 5,1629

Table C.36: MBEGA vs MAs respectively endowed with AF ∗ and BF ∗ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,35% 46,15% 49,78% 4647524,7647 36,5294

- Sd: 2,47% 7,42% 4,89% 2030048,161 8,0477
(only GA) T-: - - - - -

M : 0,89% 42,27% 38,75% 995287,88 4
AF ∗ Sd: 1,76% 4,77% 8,64% 460122,2788 1,118

T-: -4,0781 -7,8874 -9,1393 -19,2099 -44,1362
M : 1,78% 42,31% 47,31% 2111715,5556 30

BF ∗ Sd: 2,11% 7,74% 5,48% 905140,3792 19,685
T-: -2,6142 -3,5912 -2,7099 -13,3122 -4,8971

CNS M : 0,00% 42,67% 44,27% 2819096,5294 33,3529
- Sd: 0,00% 11,91% 5,84% 1436436,1201 11,7789

(only GA) T-: - - - - -
M : 0,83% 38,00% 36,67% 638983,62 12,75

AF ∗ Sd: 2,36% 6,74% 9,33% 315675,5265 12,7588
T-: 1,1429 -4,7509 -15,1962 -20,4229 -11,4478
M : 1,90% 39,33% 42,38% 918696,57 14

BF ∗ Sd: 3,25% 8,36% 3,69% 521110,0648 12,7541
T-: 7 -5,6237 -3,6979 -12,7087 -16,0509

Colon M : 2,21% 26,91% 33,32% 1910513,9412 26,5882
- Sd: 3,08% 5,96% 6,26% 1205013,4761 10,7008

(only GA) T-: - - - - -
M : 0,69% 22,65% 29,46% 336776,88 3,88

AF ∗ Sd: 2,08% 5,99% 7,91% 164966,6779 0,928
T-: -10,0118 -19,9908 -3,399 -19,0316 -50,8341
M : 2,34% 25,32% 28,47% 871693,62 3,25

BF ∗ Sd: 3,23% 13,70% 12,45% 432682,7494 0,8864
T-: 0,4303 -0,5495 -1,5865 -12,3716 -52,1572

Leukemia3C M : 0,00% 21,23% 28,54% 4875401,7368 38,5263
- Sd: 0,00% 7,26% 7,82% 1918293,1208 7,9398

(only GA) T-: - - - - -
M : 0,00% 11,98% 14,75% 1936374,77 10,88

AF ∗ Sd: 0,00% 8,40% 3,51% 489143,8056 13,2518
T-: - -32,21 -47,3492 -23,907 -61,1321
M : 0,00% 18,26% 21,67% 2048525,62 9,87

BF ∗ Sd: 0,00% 5,26% 7,19% 688241,6941 16,2519
T-: - -11,7409 -6,4217 -20,1786 -32,9477

Leukemia4C M : 0,00% 33,54% 40,58% 4838907,0526 41,9474
- Sd: 0,00% 9,16% 7,66% 1583335,4614 5,6517

(only GA) T-: - - - - -
M : 0,00% 20,49% 19,44% 1752124,75 8

AF ∗ Sd: 0,00% 6,07% 3,32% 404180,1855 2,1381
T-: - -25,0289 -46,0981 -25,2517 -68,9899
M : 0,00% 32,36% 30,62% 2208339,87 21

BF ∗ Sd: 0,00% 9,66% 10,44% 747196,5481 15,8024
T-: - -0,852 -7,5682 -18,6135 -19,2867

Table C.37: GA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 15,32% 26,88% 17129218,9444 46,1111

- Sd: 0,00% 3,74% 1,96% 6676624,4762 3,0076
(only GA) T-: - - - - -

M : 0,78% 12,67% 21,78% 6881492,7 26,6
AF ∗ Sd: 1,01% 2,49% 1,90% 1960940,9098 12,6069

T-: 10 -8,0793 -28,5519 -130,2916 -11,2088
M : 0,22% 17,49% 25,43% 6594822,55 26,33

BF ∗ Sd: 0,65% 5,10% 2,55% 1395639,3074 14,0712
T-: 9 5,3979 -41,0164 -122,6037 -11,6038

MLL - M : 0,00% 22,66% 32,72% 4762235,3158 34,6316
(only GA) Sd: 0,00% 8,68% 8,22% 2181348,1554 9,7821

T-: - - - - -
M : 0,00% 16,06% 14,72% 1579315,3 4,8

AF ∗ Sd: 0,00% 3,39% 3,39% 496630,9341 1,1353
T-: - -9,0176 -34,0991 -31,1027 -362,4013
M : 0,00% 20,16% 19,21% 1392950,71 8,14

BF ∗ Sd: 0,00% 10,93% 6,41% 284371,5625 4,3753
T-: - -1,8204 -30,5593 -63,2021 -44,7328

Orarian M : 0,00% 3,40% 19,12% 12696723,3333 24,5
- Sd: 0,00% 2,36% 10,46% 5157035,8265 6,7584

(only GA) T-: - - - - -
M : 0,00% 2,13% 4,27% 3987748,2 4,6

AF ∗ Sd: 0,00% 0,83% 0,34% 865069,0292 1,075
T-: - -9,2865 -47,3563 -17,4354 -78,6003
M : 0,00% 3,16% 17,60% 6239140,22 24,5556

BF ∗ Sd: 0,00% 2,00% 9,47% 1741046,5277 13,5565
T-: c -0,8496 -2,1473 -13,0276 0,187

SRBCT M : 0,00% 12,85% 44,99% 7476719,9444 41,7222
- Sd: 0,00% 6,34% 7,32% 3298359,6883 5,9092

(only GA) T-: - - - - -
M : 0,00% 11,32% 36,49% 2120388,5 8,5

AF ∗ Sd: 0,00% 4,96% 6,20% 456188,7659 2,3688
T-: - -4,2222 -7,479 -19,4915 -94,2926
M : 0,00% 18,78% 42,60% 2763555,66 7,66

BF ∗ Sd: 0,00% 11,52% 7,58% 284305,5357 2,8752
T-: - 8,1634 -2,8179 -17,3679 -96,4303

9 Tumors M : 20,00% 76,74% 94,32% 6014650,1053 41,1053
- Sd: 3,85% 8,32% 1,85% 2794142,5604 7,5196

(only GA) T-: - - - - -
M : 17,78% 79,04% 93,48% 2273256,77 34,55

AF ∗ Sd: 7,45% 6,95% 2,26% 486698,7644 17,3789
T-: -5,1794 1,7986 -8,0021 -16,5463 -2,0575
M : 16,67% 76,25% 94,67% 2542024,87 39,75

BF ∗ Sd: 5,04% 6,27% 2,11% 600032,1476 14,0789
T-: -6,1193 -0,3805 1,0402 -15,442 -1,1441

11 Tumors M : 5,74% 27,19% 73,43% 22335377,2105 47,5789
- Sd: 1,76% 4,35% 3,54% 8341713,8785 1,8048

(only GA) T-: - - - - -
M : 7,07% 28,45% 73,03% 7719192,88 41,8889

AF ∗ Sd: 4,17% 5,75% 2,72% 2159676,3153 11,5157
T-: 1,3511 1,2575 -2,2596 -21,5326 -1,9044
M : 7,58% 26,13% 73,49% 10918564,11 46,88

BF ∗ Sd: 2,27% 6,39% 3,91% 1500935,5444 3,9511
T-: 18,0758 -0,773 0,0662 -18,2162 -6,6763

Table C.38: GA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors M : 39,26% 62,83% 87,26% 74594390,4615 46,3846

- Sd: 3,83% 3,68% 1,11% 17820808,0553 3,9059
(only GA) T-: - - - - -

M : 38,83% 64,05% 87,90% 26427243,3 46,7
AF ∗ Sd: 3,54% 3,44% 1,48% 2425678,5106 4,4485

T-: -1,5582 3,9113 2,5921 -37,6098 0,4163
M : 40,55% 60,92% 86,78% 30500610,11 43,55

BF ∗ Sd: 3,60% 2,70% 1,59% 3420530,2441 5,8119
T-: 5,989 -7,0853 -2,6665 -34,2139 -3,6679

Brain Tumor2 M : 0,00% 44,65% 57,31% 3975539,1818 39,6364
- Sd: 0,00% 10,83% 10,01% 1120421,9314 10,8099

(only GA) T-: - - - - -
M : 0,00% 40,50% 52,90% 928552,37 11,75

AF ∗ Sd: 0,00% 11,40% 4,16% 221960,0796 9,6028
T-: - -5,4276 -9,5233 -38,8386 -28,3916
M : 0,96% 45,50% 56,30% 979041,62 10,5

BF ∗ Sd: 2,72% 10,85% 4,32% 283275,6847 5,8554
T-: 8 0,6485 -1,7617 -37,3824 -27,6764

Prostate Tumor M : 0,00% 27,48% 35,72% 5427461,75 33
- Sd: 0,00% 5,74% 8,72% 2153667,5087 6,396

(only GA) T-: - - - - -
M : 0,00% 16,55% 15,61% 1670356 6,9

AF ∗ Sd: 0,00% 2,78% 2,34% 500049,5387 1,2867
T-: - -37,3096 -77,1694 -172,8398 -104,3166
M : 0,00% 26,03% 30,54% 2110164 15,12

BF ∗ Sd: 0,00% 11,61% 13,69% 429317,4073 13,6532
T-: - -4,0194 -3,8238 -184,5181 -8,4152

Lymphoma M : 0,00% 7,84% 18,42% 2970675,6667 18,2
- Sd: 0,00% 5,55% 3,68% 1320242,23 7,6737

(only GA) T-: - - - - -
M : 0,00% 16,06% 18,91% 1282634,1 2,9

AF ∗ Sd: 0,00% 1,92% 2,52% 203379,0288 0,3162
T-: - 98,1332 4,585 -101,1695 -33,7418
M : 0,00% 10,04% 14,72% 1444072,57 8,71

BF ∗ Sd: 0,00% 5,67% 3,53% 325350,2034 6,6762
T-: - 25,4963 -8,7923 -35,7386 -19,3931

Table C.39: GA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (3)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast M : 2,22% 45,05% 47,45% 1306510,8889 15,3333

MBEGA Sd: 2,11% 3,43% 6,95% 657546,5512 12,52
T-: - - - - -
M : 0,89% 42,27% 38,75% 995287,88 4

AF ∗ Sd: 1,76% 4,77% 8,64% 460122,2788 1,118
T-: -3,3489 -5,0752 -4,4842 -4,7057 -7,65
M : 1,78% 42,31% 47,31% 2111715,5556 30

BF ∗ Sd: 2,11% 7,74% 5,48% 905140,3792 19,685
T-: -1,591 -2,4947 -0,0784 11,9858 7,92

CNS M : 2,22% 41,19% 40,44% 776660,4444 16,4444
MBEGA Sd: 3,33% 6,85% 5,35% 579215,0463 16,8605

T-: - - - - -
M : 0,83% 38,00% 36,67% 638983,625 12,75

AF ∗ Sd: 2,36% 6,74% 9,33% 315675,5265 12,7588
T-: -1,8041 -3,0476 -25,3628 -1,6956 -1,8387
M : 1,90% 39,33% 42,38% 918696,5714 14

BF ∗ Sd: 3,25% 8,36% 3,69% 521110,0648 12,7541
T-: -0,864 -2,6762 10,5406 1,0719 -1,6289

Colon M : 0,78% 23,47% 28,79% 769904,375 10,125
MBEGA Sd: 2,21% 3,10% 8,53% 631280,9958 13,174

T-: - - - - -
M : 0,69% 22,65% 29,46% 336776,88 3,88

AF ∗ Sd: 2,08% 5,99% 7,91% 164966,6779 0,928
T-: -0,6975 -2,3842 0,4964 -5,7856 -6,1397
M : 2,34% 25,32% 28,47% 871693,625 3,25

BF ∗ Sd: 3,23% 13,70% 12,45% 432682,7494 0,8864
T-: 5,0596 0,6405 -0,1025 1,3346 -6,766

Leukemia3C M : 0,00% 15,56% 15,76% 2073395,375 4,125
MBEGA Sd: 0,00% 8,59% 2,74% 445394,4673 0,991

T-: - - - - -
M : 0,00% 11,98% 14,75% 1936374,77 10,88

AF ∗ Sd: 0,00% 8,40% 3,51% 489143,8056 13,2518
T-: - -3,1902 -1,6319 -3,5151 15,6433
M : 0,00% 18,26% 21,67% 2048525,62 9,87

BF ∗ Sd: 0,00% 5,26% 7,19% 688241,6941 16,2519
T-: - 2,4315 4,9125 -0,3202 6,6898

Leukemia4C M : 0,00% 28,33% 33,89% 2055455 15,1667
MBEGA Sd: 0,00% 12,12% 14,65% 748936,9207 12,1559

T-: - - - - -
M : 0,00% 20,49% 19,44% 1752124,75 8

AF ∗ Sd: 0,00% 6,07% 3,32% 404180,1855 2,1381
T-: - -4,0939 -6,7682 -9,8806 -3,8165
M : 0,00% 32,36% 30,62% 2208339,875 21

BF ∗ Sd: 0,00% 9,66% 10,44% 747196,5481 15,8024
T-: - 1,7478 -1,3241 1,9782 2,761

Table C.40: MBEGA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (1)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung M : 0,00% 14,26% 23,43% 6746779,6667 28,3333

MBEGA Sd: 0,00% 4,54% 2,32% 1982244,4482 15,397
T-: - - - - -
M : 0,78% 12,67% 21,78% 6881492,7 26,6

AF ∗ Sd: 1,01% 2,49% 1,90% 1960940,9098 12,6069
T-: 10 -6,7586 -8,3021 0,5056 -0,8517
M : 0,22% 17,49% 25,43% 6594822,5556 26,3333

BF ∗ Sd: 0,65% 5,10% 2,55% 1395639,3074 14,0712
T-: 9 9,8212 21,2031 -0,5656 -0,9979

MLL M : 0,00% 20,71% 19,52% 1924337,8571 3,7143
MBEGA Sd: 0,00% 7,93% 6,80% 670178,6692 0,488

T-: - - - - -
M : 0,00% 16,06% 14,72% 1579315,3 4,8

AF ∗ Sd: 0,00% 3,39% 3,39% 496630,93 1,13
T-: - -7,9259 -4,9883 -3,5631 12,0889
M : 0,00% 20,16% 19,21% 1392950,71 8,14

BF ∗ Sd: 0,00% 10,93% 6,41% 284371,5625 4,3753
T-: - -0,4263 -0,3457 -12,7185 7,465

Orarian M : 0,00% 2,22% 4,69% 4376831,2857 2
MBEGA Sd: 0,00% 0,56% 0,43% 1098440,9428 0

T-: - - - - -
M : 0,00% 2,13% 4,27% 3987748,2 4,6

AF ∗ Sd: 0,00% 0,83% 0,34% 865069,0292 1,075
T-: - -0,5811 -13,0743 -4,7785 65
M : 0,00% 3,16% 17,60% 6239140,2222 24,5556

BF ∗ Sd: 0,00% 2,00% 9,47% 1741046,5277 13,5565
T-: - 3,1736 20,3657 34,9739 140,5385

SRBCT M : 0,00% 11,29% 32,54% 2253283,4286 5,7143
MBEGA Sd: 0,00% 4,43% 5,64% 502583,6223 2,3604

T-: - - - - -
M : 0,00% 11,32% 36,49% 2120388,5 8,5

AF ∗ Sd: 0,00% 4,96% 6,20% 456188,7659 2,3688
T-: - 0,061 3,0256 -1,5557 11,1451
M : 0,00% 18,78% 42,60% 2763555,6667 7,6667

BF ∗ Sd: 0,00% 11,52% 7,58% 284305,5357 2,8752
T-: - 9,6232 9,4849 6,9292 7,7747

9 Tumors M : 21,11% 75,22% 95,22% 2831195,5 38,6667
MBEGA Sd: 2,72% 7,99% 1,66% 514528,9278 17,1075

T-: - - - - -
M : 17,78% 79,04% 93,48% 2273256,77 34,55

AF ∗ Sd: 7,45% 6,95% 2,26% 486698,7644 17,3789
T-: -10,8 2,6213 -7,8089 -17,7342 -1,1634
M : 16,67% 76,25% 94,67% 2542024,87 39,75

BF ∗ Sd: 5,04% 6,27% 2,11% 600032,1476 14,0789
T-: -9,7473 0,706 -1,4221 -13,9016 0,5589

11 Tumors M : 3,64% 23,22% 74,25% 10439972,6 49
MBEGA Sd: 2,03% 3,59% 0,92% 2127251,9073 2,8284

T-: - - - - -
M : 7,07% 28,45% 73,03% 7719192,88 41,88

AF ∗ Sd: 4,17% 5,75% 2,72% 2159676,3153 11,5157
T-: 3,4387 4,0296 -6,9511 -9,959 -2,3749
M : 7,58% 26,13% 73,49% 10918564,1111 46,88

BF ∗ Sd: 2,27% 6,39% 3,91% 1500935,5444 3,9511
T-: 19,6618 1,8268 -0,8987 5,856 -9,4644

Table C.41: MBEGA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (2)
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Data Local Search Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
M : 38,40% 61,93% 85,84% 32426149,28 47,42

MBEGA Sd: 3,74% 3,48% 1,48% 3598869,18 4,68
T-: - - - - -
M : 38,83% 64,05% 87,90% 26427243,3 46,7

14 Tumors AF ∗ Sd: 3,54% 3,44% 1,48% 2425678,51 4,44
T-: 0,83 12,37 8,84 -8,09 -0,90
M : 40,55% 60,92% 86,78% 30500610,11 43,55

BF ∗ Sd: 3,60% 2,70% 1,59% 3420530,24 5,81
T-: 4,43 -16,94 5,75 -2,54 -4,71
M : 0,00% 51,60% 59,73% 966079,66 10,66

MBEGA Sd: 0,00% 15,88% 5,25% 424005,48 7,00
T-: - - - - -
M : 0,00% 40,50% 52,90% 928552,37 11,75

Brain Tumor2 AF ∗ Sd: 0,00% 11,40% 4,16% 221960,07 9,60
T-: - -6,5238 -5,9131 -2,0107 1,0632
M : 0,96% 45,50% 56,30% 979041,62 10,5

BF ∗ Sd: 2,72% 10,85% 4,32% 283275,6847 5,8554
T-: 8 -3,04 -2,85 0,52 -0,15
M : 0,00% 26,39% 40,11% 2119086,85 27

MBEGA Sd: 0,00% 6,07% 7,89% 420355,88 14,73
T-: - - - - -
M : 0,00% 16,55% 15,61% 1670356 6,9

Prostate Tumor AF ∗ Sd: 0,00% 2,78% 2,34% 500049,53 1,28
T-: - -26,06 -30,59 -10,1633 -9,3799
M : 0,00% 26,03% 30,54% 2110164 15,12

BF ∗ Sd: 0,00% 11,61% 13,69% 429317,4073 13,6532
T-: - -0,82 -6,16 -0,21 -3,94
M : 0,00% 12,29% 14,81% 1328352 2,85

MBEGA Sd: 0,00% 2,56% 2,99% 380575,53 0,37
T-: - - - - -
M : 0,00% 16,06% 18,91% 1282634,1 2,9

Lymphoma AF ∗ Sd: 0,00% 1,92% 2,52% 203379,02 0,31
T-: - 96,27 30,04 -0,84 1,88
M : 0,00% 10,04% 14,72% 1444072,57 8,71

BF ∗ Sd: 0,00% 5,67% 3,53% 325350,20 6,67
T-: - -50,47 -0,20 1,72 31,69

Table C.42: MBEGA vs MAs respectively endowed with iterative AF ∗ and BF ∗ (3)
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Annex IV: Detailed Empirical

Results of Chapter IV

Only results of the fourth section of the chapter are reported. Experimental results

are organized according to the type LS operator used.
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 3,60% 36,92% 41,17% 910747,6 2,1

Sd: 1,26% 1,87% 2,01% 198780,1741 0,3162
T-: - - - - -

Releif M : 1,67% 39,86% 40,62% 811708,25 3
Sd: 2,06% 3,21% 5,08% 174635,3261 1,206
T-: -13,3763 20,6611 -1,2457 -3,1985 90

S.U. M : 2,55% 41,14% 41,25% 641910,27 7,27
Sd: 2,02% 4,48% 4,71% 132212,3444 5,1979
T-: -7,6334 7,9446 0,2445 -11,139 10,789

CNS IGV M : 0,00% 37,87% 37,87% 257922 2,6
Sd: 0,00% 4,20% 6,04% 45144,5349 0,5164
T-: - - - - -

Releif M : 0,00% 40,27% 38,73% 213436,65 2,85
Sd: 0,00% 4,87% 5,26% 63802,0672 0,7452
T-: - 3,692 0,8603 -6,6517 2,1796

S.U. M : 0,00% 41,23% 36,46% 214525,94 3,21
Sd: 0,00% 6,77% 5,24% 56784,0274 1,1343
T-: - 11,9387 -1,3031 -8,7063 14,7092

Colon IGV M : 0,00% 31,74% 33,55% 65576,4 2,6
Sd: 0,00% 12,16% 6,70% 7768,6605 0,5164
T-: - - - - -

Releif M : 0,00% 33,92% 32,94% 51839,63 2,6842
Sd: 0,00% 9,50% 10,17% 16923,5792 0,4776
T-: - 9,2094 -0,6075 -16,1292 1,9441

S.U. M : 0,00% 30,75% 30,72% 50816,61 2,72
Sd: 0,00% 10,01% 10,11% 17702,4633 0,4609
T-: - -6,0048 -3,06 -16,8404 2,8508

Leukemia3C IGV M : 0,00% 7,89% 13,61% 277379,2 2,9
Sd: 0,00% 3,53% 3,40% 48247,0677 0,5676
T-: - - - - -

Releif M : 0,00% 9,67% 14,35% 230605,64 3,2353
Sd: 0,00% 3,85% 2,91% 57663,0255 0,7524
T-: - 8,7824 1,9978 -4,2941 3,2151

S.U. M : 0,00% 8,30% 13,92% 200753,57 3,2632
Sd: 0,00% 3,28% 3,03% 47572,5462 0,8057
T-: - 3,9683 0,766 -7,2093 21,2583

Leukemia4C IGV M : 5,56% 16,50% 18,56% 273944,8 2,8
Sd: 0,00% 5,17% 5,55% 79442,4958 0,4216
T-: - - - - -

Releif M : 5,56% 15,11% 19,52% 216239,6 2,9333
Sd: 0,00% 4,74% 5,97% 48174,6986 0,2582
T-: - -2,0806 3,5931 -17,3263 6,5079

S.U. M : 5,56% 16,97% 19,61% 212549,8 3
Sd: 0,00% 5,43% 5,15% 53496,8424 0,6489
T-: - 0,6426 5,2936 -15,0689 10

Table D.1: GRASP-FS based on MB operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU # Attrib
Lung IGV M : 5,23% 18,44% 21,54% 496807,4444 6,4444

Sd: 0,98% 2,02% 1,43% 82916,1851 3,9721
T-: - - - - -

Releif M : 4,36% 18,12% 22,16% 502481,33 8,38
Sd: 0,84% 2,62% 1,19% 85618,0567 3,0705
T-: -7,8095 -3,3745 5,2554 0,2698 7,8597

S.U. M : 4,38% 18,17% 21,91% 480878,64 8,88
Sd: 0,86% 2,31% 1,78% 77253,4546 4,0756
T-: -7,4032 -2,7768 3,0501 -0,769 8,734

MLL IGV M : 0,00% 17,71% 19,65% 531237,625 3,375
Sd: 0,00% 5,13% 4,42% 75626,1931 0,5175
T-: - - - - -

Releif M : 0,00% 17,95% 19,18% 400824,08 3,56
Sd: 0,00% 4,03% 5,39% 100503,2611 0,5069
T-: - 1,5618 -1,1857 -9,8286 3,7635

S.U. M : 0,00% 19,29% 20,12% 373369,8333 3,6111
Sd: 0,00% 3,37% 5,53% 71851,595 0,5016
T-: - 7,2089 1,1138 -11,9664 4,5745

ovarian IGV M : 0,00% 2,16% 4,54% 647397,625 2
Sd: 0,00% 0,63% 0,47% 65609,9882 0
T-: - - - - -

Releif M : 0,00% 3,12% 4,79% 523250,82 2
Sd: 0,00% 1,12% 0,56% 93892,0503 0
T-: - 21,182 5,2228 -7,7556 -

S.U. M : 0,00% 3,02% 4,83% 519318,46 2
Sd: 0,00% 1,05% 0,52% 101626,567 0
T-: - 7,2883 5,9254 -7,7638 -

SRBCT IGV M : 0,00% 13,11% 34,39% 74685 3,625
Sd: 0,00% 5,79% 5,61% 14441,5503 0,9161
T-: - - - - -

Releif M : 0,00% 14,89% 32,54% 69208 3,17
Sd: 0,00% 4,13% 7,46% 20701,0933 0,393
T-: - 1,5344 -3,1667 -6,1615 -2,6049

S.U. M : 0,00% 12,55% 33,40% 73012,26 3,47
Sd: 0,00% 4,36% 6,80% 18360,9135 0,6118
T-: - -0,4823 -1,6738 -2,7089 -0,8713

9 Tumors IGV M : 33,33% 85,67% 94,25% 259434,25 4,75
Sd: 0,00% 4,74% 2,05% 37175,5502 1,5811
T-: - - - - -

Releif M : 31,43% 83,67% 94,24% 199190,5 6,5714
Sd: 4,07% 6,44% 1,62% 43072,1015 4,7993
T-: -14 -6,3487 -0,1028 -10,4653 4,3216

S.U. M : 28,10% 81,43% 94,10% 218275,78 13,42
Sd: 5,35% 4,95% 1,65% 52055,9003 8,6355
T-: -51,3333 -5,8744 -1,0692 -7,1319 10,1214

11 Tumors IGV M : 21,14% 34,64% 69,29% 513053,55 9,8
Sd: 2,10% 4,99% 1,74% 111159,8372 4,0601
T-: - - - - -

Releif M : 18,02% 29,98% 69,79% 520370,76 13,95
Sd: 3,11% 4,64% 1,73% 94289,5309 6,1642
T-: -24,0642 -24,8452 5,1275 0,9168 12,43

S.U. M : 16,79% 28,50% 69,65% 558506,11 17,18
Sd: 4,11% 6,83% 1,90% 119276,536 8,3701
T-: -40,6351 -31,7976 3,6703 5,6964 28,0227

Table D.2: GRASP-FS based on MB operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 61,22% 74,08% 84,10% 1055734,8571 6,7143

Sd: 0,90% 1,85% 1,43% 144126,9018 2,4976
T-: - - - - -

Releif M : 59,01% 71,26% 84,75% 1184131,25 9,875
Sd: 2,60% 3,94% 1,20% 204848,6502 4,3493
T-: -41,9518 -17,5103 2,3622 4,8767 8,8887

S.U. M : 56,98% 69,02% 84,75% 1285658,93 13,56
Sd: 2,68% 4,44% 1,30% 171195,2231 5,8988
T-: -55,984 -15,1341 2,5741 9,9768 16,3485

Brain Tumor2 IGV M : 0,00% 44,70% 56,00% 321544,375 3
Sd: 0,00% 8,43% 3,28% 67188,1366 0
T-: - - - - -

Releif M : 0,00% 44,00% 54,20% 280183,68 2,93
Sd: 0,00% 9,54% 4,75% 65206,9985 0,25
T-: - -0,8178 -2,5677 -3,3983 -1,0667

S.U. M : 0,00% 43,29% 54,58% 293873,83 3
Sd: 0,00% 8,94% 4,97% 55972,8705 0
T-: - -2,5758 -1,8011 -2,3054 -

Prostate Tumor IGV M : 0,00% 14,36% 17,50% 343600,875 2,5
Sd: 0,00% 2,99% 2,52% 87981,2744 0,5345
T-: - - - - -

Releif M : 0,00% 14,00% 17,04% 288185,23 2,92
Sd: 0,00% 2,98% 2,50% 76036,3787 0,2774
T-: - -0,6124 -2,3691 -4,4031 6,7391

S.U. M : 0,00% 14,31% 16,42% 323304,68 2,93
Sd: 0,00% 2,45% 2,36% 74430,6706 0,25
T-: - -0,0941 -4,1106 -1,8168 6,9864

Lymphoma IGV M : 0,00% 16,06% 17,35% 130114,375 2
Sd: 0,00% 2,53% 6,95% 23161,9997 0
T-: - - - - -

Releif M : 0,00% 15,51% 16,61% 110298,52 2,11
Sd: 0,00% 2,13% 5,15% 27025,8211 0,3321
T-: - -2,6567 -1,0267 -8,1432 2,2667

S.U. M : 0,00% 16,26% 17,25% 92596,47 2,1765
Sd: 0,00% 2,21% 4,24% 24579,465 0,393
T-: - 1,0108 -0,1314 -22,1042 3,6429

Challenge 2004 IGV M : 72,83% 96,72% 98,33% 1390955,375 3,875
Sd: 2,01% 4,25% 1,08% 223913,5908 0,8345
T-: - - - - -

Releif M : 70,65% 95,26% 98,85% 1365976 6,25
Sd: 4,20% 4,49% 1,11% 214262,2442 4,7887
T-: -7,1554 -2,5704 5,2063 -4,9306 12,6229

S.U. M : 68,12% 93,26% 98,96% 1400756,5833 13,1667
Sd: 5,02% 5,17% 0,58% 216638,642 11,2882
T-: -9,3858 -4,9807 6,4246 1,5303 12,1611

Table D.3: GRASP-FS based on MB operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 5,33% 42,69% 44,12% 423499,44 2,66

Sd: 3,46% 8,63% 6,08% 87951,603 0,7071
T-: - - - - -

Releif M : 4,27% 41,67% 43,97% 1144895,4 6,8
Sd: 3,53% 5,50% 5,89% 1967813,9708 9,2752
T-: -2,7565 -1,4625 -0,4897 17,8946 105,003

S.U. M : 4,00% 44,48% 47,50% 1583920,75 9,25
Sd: 3,02% 5,84% 3,99% 2675452,5964 12,4871
T-: -2,2941 2,6822 17,7568 9,0512 23,207

CNS IGV M : 0,00% 36,83% 41,50% 68493,5 3,25
Sd: 0,00% 7,41% 2,98% 38010,6904 0,4629
T-: - - - - -

Releif M : 0,56% 39,78% 43,06% 78598,25 6,6667
Sd: 1,92% 5,41% 6,29% 72756,4842 8,0829
T-: 12 1,6779 6,5879 3,1371 14,166

S.U. M : 0,61% 40,36% 39,88% 99394,90 8,81
Sd: 2,01% 8,24% 7,16% 77629,7462 9,185
T-: 11 1,5415 -8,6316 5,3239 12,4307

Colon IGV M : 0,00% 33,47% 34,52% 21787,75 2,25
Sd: 0,00% 11,28% 8,93% 3609,7527 0,4629
T-: - - - - -

Releif M : 0,48% 30,32% 33,50% 21661,53 3,07
Sd: 1,73% 9,93% 12,03% 5529,2253 1,0377
T-: 13 -4,2643 -5,2224 -1,869 9,3397

S.U. M : 0,57% 35,25% 36,54% 23020,5455 2,7273
Sd: 1,88% 7,41% 10,85% 5340,2747 0,9045
T-: 11 1,9942 13,104 10,0561 6,5265

Leukemia3C IGV M : 0,00% 8,77% 14,63% 65137,3333 4,6667
Sd: 0,00% 7,29% 6,95% 18304,6667 1,2247
T-: - - - - -

Releif M : 0,00% 8,33% 14,03% 66645,4167 4,8333
Sd: 0,00% 6,59% 5,50% 15771,9492 1,4668
T-: - -0,2235 -1,0086 0,713 1,3636

S.U. M : 0,00% 10,31% 14,81% 70605,2222 4,1111
Sd: 0,00% 8,20% 4,54% 16976,6548 0,928
T-: - 0,6343 0,3855 2,7064 -7,398

Leukemia4C IGV M : 5,56% 21,32% 24,38% 70015,625 4,5
Sd: 0,00% 4,69% 4,56% 15811,1345 2,0702
T-: - - - - -

Releif M : 5,56% 20,83% 26,85% 61495,16 6,25
Sd: 0,00% 3,54% 4,80% 14851,2926 2,9886
T-: - -1,0311 5,4066 -4,5173 8,1588

S.U. M : 5,98% 21,67% 28,72% 71081,8462 6,6154
Sd: 1,54% 3,33% 6,29% 23541,8264 4,2336
T-: 13 0,7701 11,8379 0,4402 9,4043

Table D.4: GRASP-FS based on MB+ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib
Lung IGV M : 3,27% 17,34% 22,55% 306600 6

Sd: 1,70% 5,53% 2,06% 57184,693 2
T-: - - - - -

Releif M : 3,10% 18,02% 23,05% 321722,5 6,75
Sd: 1,77% 3,37% 1,99% 81509,9117 2,8324
T-: -0,6081 0,5924 5,3024 11,621 3,2489

S.U. M : 3,62% 17,50% 23,15% 358199,2308 9,5385
Sd: 1,09% 4,18% 1,42% 92485,962 4,1756
T-: 4,6162 0,1207 4,4243 15,3708 7,364

MLL IGV M : 0,00% 12,22% 17,43% 130675 4,125
Sd: 0,00% 3,93% 4,21% 41884,5966 1,3562
T-: - - - - -

Releif M : 0,00% 16,98% 20,25% 224524,3333 10,8889
Sd: 0,00% 4,86% 8,56% 88324,2561 5,9465
T-: - 13,1937 9,8713 6,3196 7,6191

S.U. M : 0,00% 13,38% 17,88% 235274,4545 7,6364
Sd: 0,00% 4,95% 3,49% 219298,3993 5,5186
T-: - 2,3287 2,196 6,7713 7,9026

Ovarian IGV M : 0,00% 2,70% 4,67% 289944,8889 2,3333
Sd: 0,00% 0,43% 0,47% 81162,7247 0,5
T-: - - - - -

Releif M : 0,00% 2,79% 4,44% 263548,2222 2,4444
Sd: 0,00% 0,42% 0,61% 56475,7135 0,527
T-: - 1,9565 -3,2987 -1,663 1,5435

S.U. M : 0,00% 2,68% 4,48% 276473,4444 2,4444
Sd: 0,00% 0,42% 0,70% 87399,4587 0,527
T-: - -0,2432 -3,8831 -0,7425 1,8

SRBCT IGV M : 0,00% 15,12% 34,25% 26115,3333 3,2222
Sd: 0,00% 6,35% 11,48% 2161,6044 0,441
T-: - - - - -

Releif M : 0,00% 11,44% 30,55% 31545,4545 6
Sd: 0,00% 6,13% 8,17% 12510,638 3,5777
T-: - -2,2233 -4,0916 1,6315 7,6213

S.U. M : 0,00% 11,51% 33,85% 28977,1 8,6
Sd: 0,00% 5,42% 10,22% 5334,4187 8,9343
T-: - -2,3538 -0,4389 6,1149 9,5939

9 Tumors IGV M : 25,00% 82,33% 94,08% 91812,125 5,375
Sd: 6,90% 7,37% 1,31% 27626,1218 1,5059
T-: - - - - -

Releif M : 24,67% 82,60% 94,93% 97947,7 5,5
Sd: 4,50% 6,73% 2,04% 34075,2635 1,9003
T-: -0,4273 0,4637 4,3134 0,7697 0,5975

S.U. M : 24,00% 84,40% 94,80% 132098,8 7
Sd: 6,44% 8,59% 1,66% 81073,3564 4,6428
T-: -1,4716 3,5196 5,815 7,8248 8

11 Tumors IGV M : 24,40% 42,93% 70,99% 366561,7895 5,4737
Sd: 6,42% 7,92% 3,14% 121331,7967 1,467
T-: - - - - -

Releif M : 20,98% 42,47% 72,68% 520135,4333 9,0333
Sd: 5,43% 8,10% 3,28% 363634,9341 7,1847
T-: -32,3724 -0,8893 8,8645 18,9016 34,5585

S.U. M : 20,00% 39,67% 72,49% 550855,3 10,75
Sd: 5,45% 10,70% 3,52% 322024,6297 8,1103
T-: -19,7637 -2,9976 6,1379 23,9132 11,2511

Table D.5: GRASP-FS based on MB+ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 58,28% 74,77% 85,71% 1018573 7

Sd: 3,06% 4,02% 1,82% 293844,1716 1,5119
T-: - - - - -

Releif M : 58,04% 73,63% 85,85% 1015016,2308 8,3846
Sd: 5,01% 4,33% 1,51% 300371,5098 4,9081
T-: -6,4417 -3,8006 1,2818 -0,0793 10,7791

S.U. M : 55,45% 71,29% 85,84% 1323763,2 10,4
Sd: 3,57% 2,79% 1,29% 383480,2002 5,7581
T-: -9,4348 -11,1963 1,1094 8,0159 12,5646

Brain Tumor2 IGV M : 1,92% 49,40% 60,10% 110951,5 4,5
Sd: 3,56% 10,17% 2,79% 32699,7714 1,6903
T-: - - - - -

Releif M : 0,70% 50,25% 59,35% 144247,1818 7
Sd: 2,32% 13,34% 5,48% 48372,1784 4,1473
T-: -1,6904 0,4618 -0,9388 4,5264 11,9975

S.U. M : 0,77% 50,96% 58,64% 119221,2 6,7
Sd: 2,43% 13,52% 5,49% 44836,1484 3,9172
T-: -1,591 0,813 -1,8092 0,782 9,6424

Prostate Tumor IGV M : 0,00% 22,11% 24,85% 139016,875 4,25
Sd: 0,00% 8,74% 9,04% 49405,5807 1,669
T-: - - - - -

Releif M : 0,70% 20,57% 26,99% 182226 5
Sd: 1,56% 6,59% 8,89% 82938,4914 2,7203
T-: 11 -3,4522 1,614 7,6517 1,7092

S.U. M : 0,48% 22,21% 26,23% 171086,875 5,625
Sd: 1,36% 8,39% 8,32% 75058,5167 2,5036
T-: 8 0,1551 0,905 2,0088 3,4437

Lymphoma IGV M : 0,00% 18,01% 21,13% 32735 1,7143
Sd: 0,00% 2,81% 3,20% 4659,5398 0,9512
T-: - - - - -

Releif M : 0,53% 12,89% 18,07% 50436,0909 6,8182
Sd: 1,77% 6,47% 4,91% 24359,2239 5,0758
T-: 11 -54,7192 -13,1364 6,2693 40,4197

S.U. M : 0,00% 18,48% 22,65% 32802,875 1,875
Sd: 0,00% 5,01% 2,73% 4218,4935 0,991
T-: - 3,6807 10,6213 0,1579 1,0744

Challenge 2004 IGV M : 73,29% 98,16% 99,30% 2244314,7143 3,5714
Sd: 4,65% 2,47% 0,62% 1226970,9116 1,3973
T-: - - - - -

Releif M : 70,65% 96,89% 98,94% 5096618 10,875
Sd: 5,57% 2,55% 0,71% 7260376,5843 15,4313
T-: -2,1531 -2,5298 -4,2232 8,7595 14,9593

S.U. M : 73,04% 97,51% 98,93% 5076977,3 8,8
Sd: 4,00% 3,31% 0,60% 6541440,1996 13,1386
T-: -1,9998 -1,1616 -3,2685 7,8319 8,965

Table D.6: GRASP-FS based on MB+ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU(ms) # Attrib.
Breast IGV M : 13,82% 44,66% 49,17% 812317,2727 10,4545

Sd: 6,54% 7,96% 5,56% 555866,3638 5,6101
T-: - - - - -

Releif M : 7,16% 43,55% 49,41% 1880707,6316 22,1579
Sd: 5,75% 7,85% 3,53% 749275,5214 7,4853
T-: -20,624 -1,0751 0,3979 20,29 14,7258

S.U. M : 6,11% 44,01% 50,50% 1747183,0526 19,3684
Sd: 5,39% 8,17% 4,16% 730412,7556 8,3614
T-: -34,7421 -0,6065 1,9461 18,2411 11,5868

CNS IGV M : 6,11% 44,83% 41,22% 67475 9,4167
Sd: 6,00% 8,95% 6,29% 21706,1099 5,6962
T-: - - - - -

Releif M : 5,26% 43,44% 42,95% 81314,1053 14,5263
Sd: 5,25% 7,39% 5,91% 27079,5136 7,7199
T-: -1,2799 -1,1714 2,7793 6,2713 6,9746

S.U. M : 2,67% 42,58% 42,71% 88496,7333 14,7333
Sd: 4,22% 9,40% 6,03% 32360,2494 6,1582
T-: -5,4886 -1,6088 2,3947 9,3743 6,7703

Colon IGV M : 9,38% 33,48% 38,00% 25228,4 9
Sd: 5,31% 7,84% 6,78% 6809,4706 4,6904
T-: - - - - -

Releif M : 8,46% 26,94% 34,50% 26107,9412 12,4118
Sd: 5,39% 6,53% 7,36% 4159,6665 9,4344
T-: -2,7163 -6,4925 -4,7773 0,88 4,8501

S.U. M : 7,07% 26,65% 32,99% 27781,2174 17,3043
Sd: 5,43% 5,17% 7,92% 5266,3546 10,3108
T-: -7,3442 -9,3702 -6,4164 2,9913 15,3763

Leukemia3C IGV M : 12,22% 35,17% 28,39% 104000,1 11,3
Sd: 6,31% 8,98% 15,34% 33294,7675 8,92
T-: - - - - -

Releif M : 11,11% 36,48% 31,45% 100385,4444 21
Sd: 7,13% 11,92% 15,02% 36226,917 10,5663
T-: -0,9455 2,2495 3,054 -1,4694 4,4942

S.U. M : 8,47% 28,15% 30,45% 120081,4762 19,8571
Sd: 7,58% 17,16% 13,71% 46478,4219 10,5085
T-: -3,7211 -7,906 2,0456 7,5171 4,1325

Leukemia4C IGV M : 14,14% 39,95% 43,89% 94056,9091 14,1818
Sd: 5,19% 11,28% 9,16% 42217,4803 7,4809
T-: - - - - -

Releif M : 12,09% 43,43% 45,03% 102183,8235 19,8824
Sd: 4,49% 10,03% 7,49% 38840,7571 6,818
T-: -5,795 1,9361 1,299 1,8655 5,1608

S.U. M : 10,46% 42,75% 44,25% 93182,2941 17,1765
Sd: 4,34% 8,16% 6,93% 40620,2916 7,0199
T-: -9,995 1,9827 0,5074 -0,2185 3,9294

Table D.7: GRASP-FS based on IFLS+ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 7,35% 22,57% 26,17% 484326,9167 10,6667

Sd: 4,96% 4,57% 2,47% 206322,4853 5,3144
T-: - - - - -

Releif M : 6,10% 20,86% 27,02% 499867,1111 16,6111
Sd: 3,68% 4,82% 2,80% 158526,8832 5,5321
T-: -2,4817 -3,5091 10,5896 0,7894 15,978

S.U. M : 5,39% 20,62% 27,17% 470521,05 15,55
Sd: 2,19% 5,56% 3,02% 174750,7753 5,2363
T-: -4,3572 -4,3593 11,8038 -0,7514 13,4969

MLL IGV M : 10,10% 29,44% 33,64% 164992,9091 7,6364
Sd: 6,95% 11,36% 8,21% 70414,8125 3,2333
T-: - - - - -

Releif M : 4,32% 26,08% 34,04% 333334,7222 22,3889
Sd: 5,89% 9,37% 6,64% 167997,819 9,8048
T-: -14,8876 -3,184 1,6106 13,5189 12,7541

S.U. M : 5,82% 25,58% 33,33% 265968,7143 17,4286
Sd: 7,13% 8,08% 7,27% 120861,9155 9,3839
T-: -15,9637 -3,8212 -1,1611 12,6626 12,1483

Ovarian IGV M : 0,57% 3,46% 5,79% 468285,2727 14
Sd: 0,79% 1,05% 2,36% 100279,8588 6,9714
T-: - - - - -

Releif M : 0,64% 3,00% 5,28% 544126,1364 24,6818
Sd: 0,92% 1,97% 2,04% 203380,944 11,692
T-: 1,1984 -20,5641 -5,2562 5,5244 7,608

S.U. M : 0,46% 3,70% 5,31% 483809,8824 23,7647
Sd: 0,92% 1,85% 2,33% 161086,3348 8,0973
T-: -1,8632 18,9469 -4,8029 1,1826 6,1857

SRBCT IGV M : 10,95% 31,56% 50,54% 37839 16,1
Sd: 6,37% 11,02% 10,46% 10764,0703 9,0609
T-: - - - - -

Releif M : 12,96% 25,01% 47,02% 43744,7778 26,1667
Sd: 8,92% 12,58% 11,11% 11514,7425 11,5619
T-: 5,8903 -11,4338 -17,4974 4,1111 7,7789

S.U. M : 8,73% 21,76% 46,04% 43961,5556 25,3333
Sd: 8,21% 13,22% 8,97% 11414,6533 10,9705
T-: -2,4647 -16,3818 -6,7717 4,1762 8,0365

9 Tumors IGV M : 46,06% 81,94% 93,70% 94663,9091 15,4545
Sd: 6,96% 7,96% 2,07% 36165,4482 5,6809
T-: - - - - -

Releif M : 41,59% 81,94% 93,94% 111682,2857 20,381
Sd: 9,41% 6,50% 1,90% 42924,878 8,4171
T-: -18,0324 -0,0047 8,6433 4,5828 19,1177

S.U. M : 38,89% 80,52% 93,78% 115205,4444 22,1111
Sd: 8,00% 7,33% 2,03% 47660,0852 9,591
T-: -16,4641 -2,5695 0,7881 5,8871 14,5389

11 Tumors IGV M : 43,39% 59,71% 77,47% 445363,4545 9,3636
Sd: 4,48% 5,69% 2,65% 155572,5673 3,3845
T-: - - - - -

Releif M : 35,86% 48,45% 78,03% 738540,1111 22,2222
Sd: 10,47% 13,00% 2,83% 396266,8658 14,0233
T-: -7,6122 -12,2371 1,805 10,5071 13,5112

S.U. M : 26,87% 40,26% 75,55% 850228,7059 23,7059
Sd: 11,48% 13,59% 3,92% 389367,9486 10,4568
T-: -11,1049 -13,6569 -7,513 11,5216 13,2128

Table D.8: GRASP-FS based on IFLS+ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 67,01% 78,78% 88,27% 1143892,4 10,1

Sd: 2,82% 3,51% 2,09% 479642,7669 6,4885
T-: - - - - -

Releif M : 59,94% 71,53% 88,72% 1533576,05 20,95
Sd: 6,45% 5,30% 1,45% 745159,4704 11,9361
T-: -11,8114 -8,9637 6,4944 8,9843 13,3241

S.U. M : 58,28% 72,90% 87,82% 1482310,875 17,3125
Sd: 7,92% 4,75% 1,63% 605066,8498 6,0522
T-: -9,6361 -7,3153 -10,2109 7,2397 7,3503

Brain Tumor2 IGV M : 21,37% 50,13% 62,40% 115419,3333 10,3333
Sd: 9,25% 10,70% 7,45% 29205,6801 4,5826
T-: - - - - -

Releif M : 14,53% 54,09% 60,84% 170388,1111 13,7778
Sd: 12,62% 9,40% 4,64% 75049,7691 7,7198
T-: -16,0997 7,7161 -2,5 16,1516 21,1358

S.U. M : 11,92% 54,60% 62,28% 149384,3 11,9
Sd: 10,73% 8,77% 5,03% 63327,3136 5,2103
T-: -16,0307 9,4198 -0,1752 11,3637 7,5575

Prostate Tumor IGV M : 1,92% 23,02% 27,18% 119975,7 6,9
Sd: 2,72% 7,70% 9,95% 42523,2976 3,755
T-: - - - - -

Releif M : 2,31% 29,75% 38,93% 229029,7333 23,4
Sd: 3,18% 7,44% 9,47% 127960,4154 11,831
T-: 1,5617 13,6172 16,9567 20,2065 16,5708

S.U. M : 0,85% 28,24% 35,64% 197835,8333 17,7222
Sd: 1,65% 8,05% 12,04% 100082,7482 11,0337
T-: -5,3936 22,3956 13,1219 7,1677 25,259

Lymphoma IGV M : 3,21% 12,62% 19,61% 50192 9,2727
Sd: 3,07% 8,10% 4,45% 6069,1317 8,2109
T-: - - - - -

Releif M : 2,94% 13,30% 20,64% 52566,1111 18,3333
Sd: 4,16% 7,28% 5,82% 13064,5809 9,5116
T-: -0,9129 0,7645 3,7252 4,0874 16,0785

S.U. M : 2,81% 11,62% 20,40% 49883,0435 13,5652
Sd: 3,00% 6,85% 6,12% 12132,5372 7,6386
T-: -1,4254 -2,4936 5,2225 -1,5275 6,7641

Challenge 2004 IGV M : 85,65% 98,62% 99,11% 1253633,6 8,4
Sd: 2,93% 2,24% 0,81% 480393,6022 4,2216
T-: - - - - -

Releif M : 84,62% 98,43% 99,32% 1235476,2308 13,3846
Sd: 5,78% 1,59% 0,56% 569946,6859 8,5102
T-: -2,9318 -0,9481 1,5278 -0,1913 4,3878

S.U. M : 80,56% 97,46% 99,01% 1435311,4118 11,5294
Sd: 7,70% 3,18% 0,66% 867622,1073 7,6167
T-: -15,5509 -5,7034 -0,6895 3,1452 5,0126

Table D.9: GRASP-FS based on IFLS+ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 3,60% 37,83% 40,65% 274448,85 2,15

Sd: 1,23% 2,19% 3,18% 58837,5114 0,4894
T-: - - - - -

Releif M : 2,78% 38,80% 42,65% 231831,86 3,2222
Sd: 1,87% 3,84% 4,53% 64348,0028 2,3067
T-: -10,3151 24,2692 5,4411 -20,5419 21,4663

S.U. M : 2,87% 39,88% 42,62% 233754,43 4,4359
Sd: 1,82% 5,01% 4,24% 60434,7933 4,5526
T-: -9,5435 12,1429 14,342 -19,0769 36,3374

CNS IGV M : 0,00% 39,40% 40,10% 55841,5 3,05
Sd: 0,00% 5,65% 4,22% 8892,7351 0,9445
T-: - - - - -

Releif M : 0,00% 40,27% 39,62% 45994,97 3,25
Sd: 0,00% 5,23% 5,50% 12321,2464 1,1634
T-: - 15,1961 -1,6772 -11,9859 29,3451

S.U. M : 0,00% 40,60% 38,46% 46774,44 3,26
Sd: 0,00% 5,06% 6,09% 11934,1059 1,1073
T-: - 19,1016 -5,1668 -8,9842 28,9513

Colon IGV M : 0,00% 30,39% 29,45% 19833,4 2,55
Sd: 0,00% 10,22% 5,77% 2076,1996 0,5104
T-: - - - - -

Releif M : 0,00% 32,10% 27,31% 17568,52 2,5
Sd: 0,00% 8,05% 6,21% 2796,1855 0,5061
T-: - 14,3924 -7,517 -26,5406 -1,9642

S.U. M : 0,00% 33,67% 28,53% 16858,72 2,48
Sd: 0,00% 8,14% 7,29% 2059,4176 0,5588
T-: - 18,8344 -3,022 -38,0486 -2,4025

Leukemia3C IGV M : 0,00% 9,47% 14,69% 61589,65 2,6
Sd: 0,00% 2,85% 2,75% 11642,8988 0,8208
T-: - - - - -

Releif M : 0,00% 9,98% 14,24% 50707,05 2,9167
Sd: 0,00% 4,14% 3,52% 14518,9582 0,9673
T-: - 7,0069 -3,2017 -24,7946 9,7802

S.U. M : 0,00% 10,03% 14,43% 48417,35 3,325
Sd: 0,00% 4,69% 3,34% 10838,4666 1,0952
T-: 7,8277 -1,9452 -36,0486 18,7365

Leukemia4C IGV M : 5,56% 20,17% 21,78% 65492,1 2,85
Sd: 0,00% 5,67% 4,92% 14458,6294 0,6708
T-: - - - - -

Releif M : 5,56% 18,80% 20,46% 53464,52 2,80
Sd: 0,00% 7,11% 4,98% 15136,5831 0,8218
T-: - -7,1673 -6,3855 -31,2005 -0,7203

S.U. M : 5,56% 19,28% 20,83% 53234,47 3,11
Sd: 0,00% 7,17% 5,17% 15149,77 0,9454
T-: - -6,0248 -5,8548 -39,3428 4,1964

Table D.10: GRASP-FS based on MB∗ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 5,23% 18,01% 20,85% 152316,8889 6,4444

Sd: 0,95% 1,83% 1,66% 30949,9313 3,3294
T-: - - - - -

Releif M : 4,17% 17,56% 21,09% 133368,09 10,90
Sd: 0,66% 3,50% 1,92% 39518,4522 4,1063
T-: -28,6202 -4,5777 7,1858 -12,4947 25,0293

S.U. M : 4,17% 16,86% 21,39% 132121,5 11,95
Sd: 0,66% 2,50% 1,64% 30341,2352 5,43
T-: -18,8991 -43,8588 27,7354 -11,7812 28,7668

MLL IGV M : 0,00% 23,14% 22,03% 120993,1 3,1
Sd: 0,00% 6,40% 5,61% 29803,9131 0,4472
T-: - - - - -

Releif M : 0,00% 20,68% 19,68% 98901,05 3,51
Sd: 0,00% 5,94% 6,12% 28423,7364 0,6122
T-: - -10,553 -35,4852 -38,0586 28,0856

S.U. M : 0,00% 20,69% 19,97% 99334,56 3,58
Sd: 0,00% 5,67% 4,78% 30162,6533 0,5906
T-: - -10,5258 -31,4364 -37,3611 43,023

Ovarian IGV M : 0,00% 2,47% 4,32% 168058,3 2
Sd: 0,00% 1,30% 0,54% 28853,9572 0
T-: - - - - -

Releif M : 0,00% 2,73% 4,39% 144516,24 2
Sd: 0,00% 1,36% 0,74% 36805,6457 0
T-: - 3,0451 5,0156 -20,3821 -

S.U. M : 0,00% 2,46% 4,30% 127554,75 2
Sd: 0,00% 1,22% 0,60% 31110,4437 0
T-: - -0,0524 -1,2959 -26,8647 -

SRBCT IGV M : 0,00% 12,00% 34,32% 26599,8 4
Sd: 0,00% 4,68% 7,36% 3349,683 0,9177
T-: - - - - -

Releif M : 0,00% 12,90% 33,71% 23373,25 3,5278
Sd: 0,00% 3,58% 7,38% 3678,7417 0,7741
T-: - 2,5228 -3,7884 -30,1292 -9,0629

S.U. M : 0,00% 11,76% 35,11% 23523,8333 3,8333
Sd: 0,00% 4,05% 7,56% 2742,335 0,7368
T-: - -0,6617 2,5571 -26,8465 -3,0249

9 Tumors IGV M : 33,70% 85,52% 94,74% 65233,9444 4,8889
Sd: 1,57% 4,71% 1,53% 15986,7671 1,4907
T-: - - - - -

Releif M : 33,13% 82,85% 94,00% 54996,8125 4,8125
Sd: 2,06% 5,58% 1,61% 16307,3275 1,3545
T-: -26,8148 -13,8734 -8,3607 -23,4305 -0,6505

S.U. M : 29,25% 79,20% 94,30% 57750,9355 11,9677
Sd: 4,10% 6,11% 1,63% 11918,3827 8,3566
T-: -33,4054 -58,0443 -4,6622 -12,2855 25,0562

11 Tumors IGV M : 20,80% 31,38% 68,47% 158556,15 10,2
Sd: 1,33% 5,59% 2,33% 33071,2274 3,2541
T-: - - - - -

Releif M : 18,03% 28,57% 69,25% 147523,7667 13,7333
Sd: 2,73% 5,35% 2,09% 25305,5388 4,3385
T-: -38,018 -23,603 8,6325 -8,1777 25,1874

S.U. M : 15,48% 25,89% 69,02% 161937,8438 19,0938
Sd: 3,53% 5,95% 1,95% 26372,1043 8,4942
T-: -245,6009 -30,0909 5,9154 2,4466 41,9544

Table D.11: GRASP-FS based on MB∗ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 60,78% 75,25% 84,85% 362638,3 7,85

Sd: 1,24% 2,35% 1,00% 53673,4209 3,0655
T-: - - - - -

Releif M : 58,69% 72,66% 84,93% 361446,40 10,0811
Sd: 3,04% 3,47% 1,11% 52658,4595 4,5423
T-: -35,3175 -30,9618 1,145 -2,6084 14,7839

S.U. M : 57,44% 71,89% 85,04% 362712,0286 12,0857
Sd: 3,35% 4,06% 0,97% 51520,0092 5,6588
T-: -28,9858 -57,1158 2,7404 0,0342 34,4613

Brain Tumor2 IGV M : 0,00% 43,52% 52,60% 90508,9 3,15
Sd: 0,00% 10,92% 5,37% 17401,2903 0,4894
T-: - - - - -

Releif M : 0,00% 45,28% 51,20% 70930 3,08
Sd: 0,00% 9,64% 5,42% 16882,3674 0,5466
T-: - 5,5922 -6,1148 -59,2994 -2,2847

S.U. M : 0,00% 44,84% 52,06% 72602,67 3,05
Sd: 0,00% 9,90% 5,36% 16092,2334 0,5242
T-: - 4,1241 -2,526 -47,7846 -3,257

Prostate Tumor IGV M : 0,00% 15,35% 17,90% 93083,95 2,5
Sd: 0,00% 4,16% 4,76% 14583,301 0,513
T-: - - - - -

Releif M : 0,00% 16,11% 18,98% 74670,30 2,77
Sd: 0,00% 5,25% 6,29% 20848,5006 0,5404
T-: - 3,3089 4,8016 -30,0223 10,7871

S.U. M : 0,00% 15,61% 18,89% 75678,82 2,8
Sd: 0,00% 5,60% 6,04% 22754,811 0,5164
T-: - 1,1941 4,6446 -29,4244 11,767

Lymphoma IGV M : 0,00% 17,36% 22,97% 32772 1
Sd: 0,00% 0,53% 1,35% 5783,6399 0
T-: - - - - -

Releif M : 0,00% 17,86% 23,03% 28132,77 1
Sd: 0,00% 1,76% 2,06% 5168,1466 0
T-: - 9,8427 1,0559 -13,7855 -

S.U. M : 0,00% 17,79% 23,39% 28370,74 1
Sd: 0,00% 2,24% 2,24% 5850,9964 0
T-: - 8,428 11,3599 -11,6266 -

Challenge 2004 IGV M : 73,67% 96,15% 98,96% 492621,2778 3,3333
Sd: 1,02% 2,92% 0,76% 90640,7174 0,686
T-: - - - - -

Releif M : 72,20% 96,01% 98,97% 454296,78 4,7105
Sd: 2,78% 3,45% 0,71% 87680,1889 4,3178
T-: -20,9058 -0,9464 0,186 -4,8286 68,7767

S.U. M : 68,58% 93,56% 98,90% 448516,41 13,2903
Sd: 4,59% 5,11% 0,61% 75941,4535 9,8765
T-: -29,5053 -15,391 -1,4442 -5,3798 27,3038

Table D.12: GRASP-FS based on MB∗ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 5,60% 37,17% 40,94% 447831,25 2,2

Sd: 2,01% 3,11% 4,67% 80885,6411 0,4104
T-: - - - - -

Releif M : 6,29% 39,48% 44,26% 316240,14 3,8
Sd: 3,11% 4,58% 5,76% 116531,6389 2,1666
T-: 7,3102 8,9237 22,5202 -22,8587 24,5576

S.U. M : 7,65% 41,74% 46,11% 299546,82 6,78
Sd: 3,39% 5,07% 5,48% 98946,9139 9,2193
T-: 25,2058 20,0177 18,4737 -22,2973 52,542

CNS IGV M : 4,33% 37,03% 39,90% 95793,2 2,15
Sd: 3,26% 3,07% 5,56% 15845,7818 0,3663
T-: - - - - -

Releif M : 2,41% 38,76% 38,41% 56623,52 3,13
Sd: 3,25% 5,50% 7,47% 24210,893 1,3342
T-: -14,322 11,0968 -6,922 -36,9296 117,2486

S.U. M : 3,73% 36,84% 37,16% 65191,5 2,5882
Sd: 3,36% 6,40% 8,01% 24920,5472 0,925
T-: -3,7977 -0,4786 -7,7432 -26,4058 10,3861

Colon IGV M : 1,56% 27,68% 32,10% 31271,15 3,05
Sd: 2,78% 9,94% 11,61% 3638,7326 1,3169
T-: - - - - -

Releif M : 0,89% 26,75% 28,33% 22970,94 4,82
Sd: 2,22% 8,75% 10,60% 5332,1787 4,449
T-: -8,148 -2,6194 -16,299 -36,191 18,4553

S.U. M : 0,74% 26,83% 29,98% 25281,5 6,5882
Sd: 2,04% 9,30% 11,24% 6314,0797 6,3728
T-: -10,2045 -2,243 -4,9219 -23,4932 11,3881

Leukemia3C IGV M : 2,16% 15,99% 16,42% 109086,0556 3,8889
Sd: 2,79% 7,35% 4,68% 20292,0419 2,3487
T-: - - - - -

Releif M : 0,67% 15,42% 16,72% 58935,84 7,45
Sd: 1,84% 8,78% 5,58% 20769,2539 6,704
T-: -12,2143 -0,6936 2,601 -37,1149 15,0554

S.U. M : 0,79% 15,57% 16,98% 73475,68 7,8
Sd: 1,97% 8,65% 5,35% 28416,3843 7,2793
T-: -11,1898 -0,5112 5,0365 -23,2667 18,2102

Leukemia4C IGV M : 6,94% 20,94% 22,61% 105455,6 3,6
Sd: 2,47% 6,87% 3,61% 12461,8059 1,6351
T-: - - - - -

Releif M : 6,08% 24,06% 23,39% 68753,56 6,65
Sd: 1,65% 6,61% 5,10% 27721,1139 5,933
T-: -4,154 45,9682 13,5552 -34,0015 33,8263

S.U. M : 6,27% 22,81% 24,62% 73651,19 9,74
Sd: 1,89% 6,80% 6,33% 25869,4954 10,798
T-: -3,2061 28,2986 20,6736 -26,0963 62,8251

Table D.13: GRASP-FS based on FLS∗ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 9,70% 23,04% 24,10% 222102,3684 10,1579

Sd: 1,22% 3,10% 1,90% 35735,1011 7,7836
T-: - - - - -

Releif M : 8,06% 19,26% 23,96% 175091,13 18,86
Sd: 1,52% 4,47% 2,26% 42089,1024 9,8069
T-: -34,5889 -19,5206 -4,6739 -23,0343 27,46

S.U. M : 7,84% 18,80% 24,33% 182647,86 22,33
Sd: 1,41% 4,03% 2,17% 38023,9199 10,2148
T-: -33,9369 -24,5965 9,8807 -15,8227 29,8255

MLL IGV M : 0,00% 23,89% 19,47% 182342,7 7,5
Sd: 0,00% 6,90% 7,58% 22942,388 1,9057
T-: - - - - -

Releif M : 0,00% 24,21% 19,09% 111975,64 11,16
Sd: 0,00% 5,67% 5,79% 44731,399 4,0422
T-: - 0,719 -0,435 -34,0323 17,0785

S.U. M : 0,00% 22,33% 20,43% 119273,57 15,8
Sd: 0,00% 7,28% 6,34% 45033,28 8,7843
T-: - -3,4412 1,0013 -34,3062 24,4165

Ovarian IGV M : 0,00% 3,79% 4,78% 245353,25 2
Sd: 0,00% 1,07% 0,73% 39599,099 0
T-: - - - - -

Releif M : 0,00% 3,33% 4,83% 184594,13 2,94
Sd: 0,00% 1,08% 0,81% 54910,7285 1,094
T-: - -6,9298 1,891 -29,5406 36

S.U. M : 0,00% 3,41% 4,86% 189873,87 2,87
Sd: 0,00% 1,15% 0,86% 51576,9358 1,0804
T-: - -5,7922 2,8536 -27,3081 39

SRBCT IGV M : 4,52% 25,76% 45,46% 41392,85 4,5
Sd: 1,88% 10,79% 6,44% 4269,7613 1,9601
T-: - - - - -

Releif M : 1,49% 18,93% 40,93% 34411,06 9,18
Sd: 2,24% 8,84% 8,03% 6933,039 4,6934
T-: -63,2406 -29,6623 -14,9906 -18,2028 59,1996

S.U. M : 1,34% 18,05% 39,60% 35466 10,03
Sd: 2,18% 11,02% 7,43% 5044,8725 5,8059
T-: -29,5912 -22,7874 -16,8471 -34,3903 45,7799

9 Tumors IGV M : 44,67% 84,30% 93,70% 87804,65 2,9
Sd: 3,13% 6,15% 2,25% 13144,9434 0,9679
T-: - - - - -

Releif M : 40,86% 82,39% 93,94% 68438,93 4,80
Sd: 4,79% 7,59% 2,03% 17506,2769 5,4432
T-: -17,9272 -5,4771 1,0495 -34,8346 21,0266

S.U. M : 39,26% 81,65% 93,68% 74568,96 10,70
Sd: 7,00% 7,24% 1,94% 15787,0501 13,6236
T-: -18,5182 -10,0676 -0,0913 -28,0269 27,3463

11 Tumors IGV M : 36,36% 52,83% 71,52% 199629,85 5,6
Sd: 2,33% 6,86% 2,36% 19445,6583 1,9029
T-: - - - - -

Releif M : 32,84% 46,40% 73,01% 171624,06 9,41
Sd: 4,31% 8,82% 2,35% 30238,0167 7,361
T-: -31 -13,4915 16,2772 -22,5637 19,8663

S.U. M : 27,14% 34,15% 72,35% 205493,4571 24,9429
Sd: 6,26% 14,71% 2,28% 48777,7544 16,7032
T-: -35 -25,0228 12,0073 3,8717 32,041

Table D.14: GRASP-FS based on FLS∗ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 67,40% 77,91% 85,36% 385703,4211 2,9474

Sd: 1,14% 3,17% 1,40% 57277,3769 0,9703
T-: - - - - -

Releif M : 66,19% 76,68% 85,11% 439093,8125 5,6875
Sd: 1,99% 4,45% 1,19% 93054,4854 6,9859
T-: -14,9903 -10,5709 -8,016 14,0314 42,4409

S.U. M : 63,28% 70,28% 85,52% 504099,8485 16,4242
Sd: 3,53% 7,26% 1,12% 125483,3026 13,5417
T-: -28,01 -19,6864 10,7771 31,6015 20,5531

Brain Tumor2 IGV M : 6,33% 47,15% 56,38% 134627,5294 5,1176
Sd: 3,02% 10,79% 5,21% 17688,4707 2,9556
T-: - - - - -

Releif M : 7,69% 43,39% 57,02% 89648,12 12,81
Sd: 3,85% 8,26% 6,74% 30865,6082 7,3504
T-: 17 -5,0411 3,3181 -36,9495 25,7005

S.U. M : 9,93% 43,51% 57,11% 89750,77 15,32
Sd: 3,55% 10,08% 6,74% 31018,3411 8,7155
T-: 33,388 -5,0011 2,3359 -73,7017 19,3846

Prostate Tumor IGV M : 0,00% 15,08% 19,50% 153742,1667 2,3889
Sd: 0,00% 2,64% 2,25% 21400,5474 0,6978
T-: - - - - -

Releif M : 0,00% 21,03% 26,03% 89377,25 8,125
Sd: 0,00% 6,42% 8,44% 35285,9235 3,9044
T-: - 55,3988 22,9672 -45,3362 35,213

S.U. M : 0,00% 19,43% 24,89% 103259,64 9,67
Sd: 0,00% 5,88% 9,22% 41837,4035 7,9876
T-: - 17,9918 10,9854 -33,4882 52,3421

Lymphoma IGV M : 0,00% 15,48% 18,82% 56511,75 2
Sd: 0,00% 3,23% 2,91% 4879,9782 0
T-: - - - - -

Releif M : 0,00% 14,72% 18,77% 37783,64 3,74
Sd: 0,00% 4,14% 2,57% 10214,1012 3,7056
T-: - -3,6198 -0,4648 -36,8341 31

S.U. M : 0,00% 15,24% 18,65% 41001,94 3,17
Sd: 0,00% 3,77% 2,77% 12210,9059 2,9153
T-: - -1,0948 -1,8868 -35,0854 35

Challenge 2004 IGV M : 77,54% 98,15% 98,89% 615434,1667 3,6111
Sd: 2,24% 2,19% 0,67% 92169,0512 1,2897
T-: - - - - -

Releif M : 77,51% 98,19% 98,79% 652539,6207 5,6552
Sd: 2,04% 2,26% 0,62% 253220,6408 8,478
T-: -0,1057 0,1169 -2,5765 4,1201 22,7059

S.U. M : 76,96% 94,18% 98,96% 787874,7333 26
Sd: 2,33% 5,69% 0,76% 331637,639 22,752
T-: -2,5718 -10,7666 1,4621 20,9179 27,8568

Table D.15: GRASP-FS based on FLS∗ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 3,80% 37,38% 41,77% 337551,35 2,05

Sd: 0,89% 1,96% 4,09% 100281,0563 0,2236
T-: - - - - -

Releif M : 2,06% 38,24% 41,63% 326681,60 3,03
Sd: 2,03% 4,53% 6,71% 102526,1601 1,2621
T-: -27,5054 8,6575 -1,3886 -3,9435 368,0768

S.U. M : 2,13% 37,74% 44,06% 389302,3 3,5
Sd: 2,03% 4,78% 6,17% 104816,4692 2,0299
T-: -23,2091 2,9211 13,4041 11,2223 7,9084

CNS IGV M : 0,00% 36,93% 37,30% 59832,65 2,7
Sd: 0,00% 6,43% 4,37% 7881,1242 0,4702
T-: - - - - -

Releif M : 0,00% 38,16% 37,39% 58327,66 2,66
Sd: 0,00% 5,30% 5,52% 30766,3276 0,4787
T-: - 13,1145 1,1041 -2,1969 -1,8433

S.U. M : 0,00% 38,27% 38,69% 92670,6176 2,8235
Sd: 0,00% 4,64% 5,36% 51462,1563 0,4586
T-: - 5,1915 8,6935 18,9348 7,7826

Colon IGV M : 0,00% 33,77% 32,68% 22555,1 2,4
Sd: 0,00% 6,19% 7,35% 2542,7348 0,5026
T-: - - - - -

Releif M : 0,00% 32,56% 31,24% 21125,65 2,57
Sd: 0,00% 7,56% 6,54% 6987,9131 0,5778
T-: - -1,201 -3,5248 -7,3084 6,8619

S.U. M : 0,00% 31,70% 31,11% 32058,7297 2,6216
Sd: 0,00% 8,08% 8,57% 14530,3485 0,5452
T-: - -4,0192 -4,6935 18,5128 9,8661

Leukemia3C IGV M : 0,00% 10,18% 13,68% 66879,1053 2,6316
Sd: 0,00% 3,83% 3,17% 12169,2384 0,5973
T-: - - - - -

Releif M : 0,00% 10,02% 14,17% 63080,57 2,57
Sd: 0,00% 3,14% 3,23% 33547,7179 0,5778
T-: - -4,0037 8,3944 -3,4702 -1,4768

S.U. M : 0,00% 10,68% 14,80% 99970,6757 2,8649
Sd: 0,00% 4,18% 4,70% 51343,6396 0,6734
T-: - 6,7526 15,4256 17,9731 6,976

Leukemia4C IGV M : 5,56% 19,47% 20,97% 64219,6 2,7
Sd: 0,00% 5,71% 3,32% 10330,6379 0,4702
T-: - - - - -

Releif M : 5,56% 18,78% 22,38% 85349,8333 2,8611
Sd: 0,00% 5,26% 5,97% 48672,0733 0,3507
T-: - -7,0311 12,5566 9,4869 10,4022

S.U. M : 5,56% 19,44% 22,84% 104205,6471 2,9118
Sd: 0,00% 6,22% 6,66% 53816,2393 0,2879
T-: - -0,3204 15,2038 22,159 13,911

Table D.16: GRASP-FS based on IFLS∗ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 5,37% 19,34% 23,39% 141901,3158 4,6842

Sd: 0,89% 3,04% 2,15% 38121,2738 2,6885
T-: - - - - -

Releif M : 4,58% 19,18% 23,13% 188647,13 6,4
Sd: 0,94% 3,88% 1,86% 97876,5597 2,7618
T-: -9,0277 -19,8085 -17,113 13,9077 5,684

S.U. M : 4,51% 19,60% 23,24% 224988,66 6,3
Sd: 0,91% 3,98% 2,02% 108798,3735 2,3067
T-: -10,9075 1,4096 -2,1178 20,4698 5,7553

MLL IGV M : 0,00% 22,44% 24,91% 116891 2,8889
Sd: 0,00% 6,99% 10,01% 17185,5238 0,3234
T-: - - - - -

Releif M : 0,00% 21,32% 23,89% 141650,1795 3
Sd: 0,00% 6,67% 10,15% 70234,2055 0,3974
T-: - -1,8361 -1,9223 10,2549 2,25

S.U. M : 0,00% 20,65% 21,52% 182483,7419 3,0323
Sd: 0,00% 7,69% 10,12% 84275,1602 0,4819
T-: - -2,8128 -6,3813 20,974 2,9026

Ovarian IGV M : 0,00% 2,51% 4,75% 180974,5789 2
Sd: 0,00% 1,08% 1,21% 55139,5621 0
T-: - - - - -

Releif M : 0,00% 2,68% 4,78% 199833,6944 2
Sd: 0,00% 1,27% 0,76% 90657,8147 0
T-: - 6,2137 2,877 6,3832 -

S.U. M : 0,00% 2,66% 4,76% 257173,8 2
Sd: 0,00% 1,00% 0,95% 94861,6352 0
T-: - 5,2854 2,2353 15,3364 -

SRBCT IGV M : 0,00% 16,20% 37,34% 28581,15 3,55
Sd: 0,00% 6,26% 7,53% 2907,7653 0,5104
T-: - - - - -

Releif M : 0,00% 16,25% 37,80% 29368,84 3,18
Sd: 0,00% 5,93% 8,14% 13122,1128 0,3966
T-: - 0,3368 1,6781 2,5225 -15,5911

S.U. M : 0,00% 16,95% 36,30% 45739,06 3,22
Sd: 0,00% 7,42% 8,63% 25668,1803 0,425
T-: - 5,935 -3,3896 21,4842 -13,7082

9 Tumors IGV M : 35,79% 87,02% 93,44% 79169,63 3,42
Sd: 3,30% 4,72% 2,28% 26268,9162 0,607
T-: - - - - -

Releif M : 34,41% 86,04% 93,08% 78292,19 4,1
Sd: 4,59% 4,00% 1,59% 34127,1851 2,446
T-: -6,1562 -6,0497 -2,0023 -0,9949 31,3985

S.U. M : 32,00% 86,11% 93,73% 101581,68 6,08
Sd: 7,45% 4,27% 1,91% 46758,7523 4,8298
T-: -7,1677 -4,5934 1,6258 8,1227 11,1798

11 Tumors IGV M : 26,59% 44,46% 70,85% 172928,05 4,2
Sd: 1,07% 3,86% 1,08% 51691,5702 1,0052
T-: - - - - -

Releif M : 24,49% 41,40% 71,25% 163977,03 5,48
Sd: 1,93% 4,41% 1,57% 53863,8142 1,626
T-: -53,9007 -26,8627 3,1337 -3,4423 62,6791

S.U. M : 21,35% 38,79% 70,79% 255331,4643 8,3929
Sd: 5,11% 4,60% 1,45% 136074,4249 4,81
T-: -38,8895 -28,1465 -0,5017 16,6457 34,4849

Table D.17: GRASP-FS based on IFLS∗ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 62,86% 76,49% 84,42% 475281 3,75

Sd: 1,71% 3,17% 1,33% 134692,2686 0,4443
T-: - - - - -

Releif M : 61,47% 74,90% 84,32% 503156,55 3,88
Sd: 2,34% 3,27% 1,35% 152152,9631 0,6667
T-: -6,2652 -7,8496 -1,0672 5,6532 5,0185

S.U. M : 59,87% 73,52% 84,32% 622786 5,3667
Sd: 3,04% 4,85% 1,23% 218210,3697 2,7852
T-: -13,2253 -15,6568 -0,9143 22,7013 34,2229

Brain Tumor2 IGV M : 0,00% 41,64% 52,84% 97336,9444 2,9444
Sd: 0,00% 8,38% 4,21% 14481,7369 0,2357
T-: - - - - -

Releif M : 0,00% 44,03% 54,18% 85503,62 2,96
Sd: 0,00% 12,40% 4,76% 17123,2502 0,4211
T-: - 3,6419 5,2247 -9,5659 6,3711

S.U. M : 0,00% 45,65% 55,39% 138132,6667 3,1
Sd: 0,00% 10,19% 4,34% 61891,1511 0,712
T-: - 6,3913 9,2264 15,1803 34,2422

Prostate Tumor IGV M : 0,00% 15,07% 19,03% 100413,8947 2,4211
Sd: 0,00% 2,77% 4,14% 15312,3316 0,5073
T-: - - - - -

Releif M : 0,00% 14,74% 18,86% 90318,62 2,58
Sd: 0,00% 3,38% 3,70% 32945,0353 0,5012
T-: - -3,541 -1,1992 -10,902 5,5061

S.U. M : 0,00% 15,52% 19,83% 141020,0588 2,5882
Sd: 0,00% 4,43% 4,80% 69347,0309 0,4996
T-: - 2,2655 1,456 18,2532 6,62

Lymphoma IGV M : 0,00% 16,88% 15,33% 37983,9 2
Sd: 0,00% 3,71% 5,25% 4228,2348 0
T-: - - - - -

Releif M : 0,00% 15,42% 15,81% 47512,0294 2
Sd: 0,00% 3,61% 4,89% 27068,6696 0
T-: - -16,2024 1,3585 14,5352 -

S.U. M : 0,00% 15,63% 17,22% 58277,9459 2
Sd: 0,00% 3,81% 5,10% 30081,6789 0
T-: - -7,4624 6,027 18,4923 -

Challenge 2004 IGV M : 73,91% 97,87% 99,30% 705548,7895 2,9474
Sd: 2,05% 1,36% 0,40% 126948,2368 0,5243
T-: - - - - -

Releif M : 73,41% 97,83% 98,96% 724715,9615 3,1154
Sd: 1,88% 2,01% 0,71% 250325,5896 0,5159
T-: -2,1846 -0,3409 -8,2568 1,4182 32,1166

S.U. M : 70,61% 95,98% 99,04% 8202 6,36
Sd: 5,22% 2,74% 0,64% 251636,9328 5,1952
T-: -12,5041 -16,637 -6,5143 6,8689 25,3862

Table D.18: GRASP-FS based on IFLS∗ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 2,40% 36,92% 38,29% 257815,6 2,5

Sd: 2,07% 2,28% 5,21% 50715,3688 0,8498
T-: - - - - -

Releif M : 2,18% 38,43% 41,04% 240883,81 5,90
Sd: 2,04% 4,82% 5,88% 52775,054 6,023
T-: -1,2116 7,788 10,4695 -4,1181 24,1149

S.U. M : 2,74% 39,89% 41,32% 236751,73 8,78
Sd: 1,91% 6,64% 5,20% 48727,9984 8,3372
T-: 1,9441 19,9277 11,5558 -5,1155 20,3685

CNS IGV M : 0,00% 37,13% 39,40% 62194,4 2,5
Sd: 0,00% 3,58% 4,67% 14139,3336 0,527
T-: - - - - -

Releif M : 0,00% 40,35% 39,79% 51644,84 3,31
Sd: 0,00% 5,57% 5,67% 16140,9987 1,1082
T-: - 6,6325 1,0313 -5,7228 5,4436

S.U. M : 0,00% 39,14% 39,53% 48857,88 3,94
Sd: 0,00% 6,36% 6,84% 13873,0015 1,7843
T-: 3,53 0,34 -7,32 10,99

Colon IGV M : 0,00% 30,58% 33,35% 20806,4 2,7
Sd: 0,00% 6,08% 9,59% 2284,3905 0,483
T-: - - - - -

Releif M : 0,00% 32,94% 34,12% 19421,52 2,82
Sd: 0,00% 9,05% 10,95% 2764,5003 0,5286
T-: - 5,7696 0,7766 -7,7503 1,7456

S.U. M : 0,00% 32,39% 32,03% 18561,35 2,85
Sd: 0,00% 8,78% 9,03% 1912,973 0,5871
T-: - 2,3705 -1,2257 -11,198 1,8317

Leukemia3C IGV M : 0,00% 10,56% 16,17% 60577,3 3
Sd: 0,00% 4,33% 2,04% 15374,3179 0,4714
T-: - - - - -

Releif M : 0,00% 10,40% 14,69% 55522,72 3,77
Sd: 0,00% 4,89% 4,01% 14125,9764 0,5483
T-: - -0,4557 -4,2622 -5,8982 63

S.U. M : 0,00% 10,15% 14,35% 54006,5 4,2222
Sd: 0,00% 5,29% 2,52% 11879,0833 1,896
T-: - -1,1494 -5,4636 -7,3151 99

Leukemia4C IGV M : 5,56% 14,94% 19,11% 62169,3 3
Sd: 0,00% 6,37% 4,34% 11856,383 0,4714
T-: - - - - -

Releif M : 5,56% 16,72% 18,78% 57116,80 4,04
Sd: 0,00% 5,36% 3,55% 9855,575 2,0366
T-: - 1,5903 -0,3771 -23,5838 11,2683

S.U. M : 5,56% 15,61% 19,30% 61390,9474 4,4737
Sd: 0,00% 5,40% 2,83% 12951,4078 2,3891
T-: - 0,5996 0,215 -0,7706 59,1111

Table D.19: GRASP-FS based on AF ∗ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 5,88% 18,46% 22,07% 136556,7778 5,3333

Sd: 0,00% 1,48% 1,10% 35354,9939 2,2361
T-: - - - - -

Releif M : 4,55% 16,73% 21,41% 146559,7727 11,2273
Sd: 0,93% 3,35% 1,66% 30544,122 5,1449
T-: -47,1429 -10,6355 -4,457 2,6287 16,0499

S.U. M : 4,37% 15,63% 21,12% 154494,40 13,04
Sd: 0,84% 2,80% 1,81% 29676,1264 5,2325
T-: -74,8 -27,303 -4,0485 4,5219 26,0278

MLL IGV M : 0,00% 24,61% 23,50% 112625,1 3
Sd: 0,00% 5,64% 5,03% 25345,8454 0,4714
T-: - - - - -

Releif M : 0,00% 21,41% 17,45% 96848 4,3529
Sd: 0,00% 4,09% 4,68% 14753,1343 0,9963
T-: - -16,9428 -8,4683 -9,3242 35,5455

S.U. M : 0,00% 21,61% 18,11% 101250,65 4,55
Sd: 0,00% 5,57% 5,64% 21842,5547 1,3945
T-: - -19,7279 -7,3173 -4,479 68,8889

Ovarian IGV M : 0,00% 2,33% 4,51% 165405,3 2
Sd: 0,00% 0,61% 0,44% 32786,7099 0
T-: - - - - -

Releif M : 0,00% 2,77% 4,59% 145817,23 2,80
Sd: 0,00% 1,31% 0,63% 27112,4048 0,9284
T-: - 4,6063 2,3866 -4,0811 14,28

S.U. M : 0,00% 2,81% 4,66% 142868,57 3,15
Sd: 0,00% 1,37% 0,65% 25648,0669 1,0679
T-: - 4,9116 4,0552 -4,6733 26,125

SRBCT IGV M : 0,00% 17,12% 38,83% 25989,1 3,7
Sd: 0,00% 4,37% 6,43% 2590,7894 0,483
T-: - - - - -

Releif M : 0,00% 12,05% 35,80% 26871,1 5,05
Sd: 0,00% 5,48% 4,92% 4094,1713 1,4318
T-: - -27,0039 -11,5131 1,9703 13,2339

S.U. M : 0,00% 12,12% 37,77% 28314,4737 5,4211
Sd: 0,00% 6,47% 3,92% 4254,7292 1,3464
T-: - -25,1937 -4,6614 5,8736 19,4796

9 Tumors IGV M : 34,00% 85,53% 94,00% 66769,3 3,8
Sd: 2,11% 5,41% 1,91% 14105,8249 0,6325
T-: - - - - -

Releif M : 31,48% 83,93% 93,56% 62794,88 8,5
Sd: 4,46% 5,16% 1,97% 17195,1845 11,9225
T-: -3,927 -1,8969 -3,0249 -2,2056 2,1973

S.U. M : 28,57% 80,19% 93,33% 67981,57 17,07
Sd: 4,07% 7,49% 1,63% 16844,3704 13,0647
T-: -35,8298 -6,5654 -4,7087 0,9762 8,4723

11 Tumors IGV M : 23,41% 36,78% 69,72% 139838,5 6,6
Sd: 1,53% 5,25% 2,43% 31995,6484 1,1738
T-: - - - - -

Releif M : 20,91% 33,79% 71,13% 151688,4 11,4
Sd: 3,26% 6,54% 2,81% 35556,7632 6,8626
T-: -8,4366 -8,9443 4,9587 94,0632 11,1148

S.U. M : 18,42% 29,15% 70,74% 181290,3158 18,4211
Sd: 4,54% 6,94% 2,92% 40351,8462 10,4367
T-: -16,7457 -18,4001 3,6019 69,9825 21,1763

Table D.20: GRASP-FS based on AF ∗ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 62,47% 77,26% 85,18% 335793,7 3,6

Sd: 2,25% 3,68% 1,14% 63765,7 0,5164
T-: - - - - -

Releif M : 59,16% 71,69% 84,71% 378852 7,1111
Sd: 2,96% 5,69% 1,38% 72287,8555 5,6765
T-: -6,9221 -5,9731 -7,0805 8,2791 4,2398

S.U. M : 58,44% 70,33% 84,59% 401761,7 8,95
Sd: 3,34% 5,61% 1,41% 67399,6481 6,3947
T-: -9,0016 -9,3451 -8,9035 18,3454 10,6132

Brain Tumor2 IGV M : 0,00% 42,64% 54,24% 86345,3 3,3
Sd: 0,00% 10,86% 5,90% 12152,1439 0,483
T-: - - - - -

Releif M : 0,00% 47,12% 53,90% 75116,52 3,7143
Sd: 0,00% 10,71% 5,53% 15392,8263 1,1019
T-: - 2,9475 -1,2731 -7,2019 5,8096

S.U. M : 0,00% 48,44% 54,52% 76108,8 4,2
Sd: 0,00% 10,92% 5,89% 15531,6156 1,2397
T-: - 4,3407 1,0842 -6,3827 7,8935

Prostate Tumor IGV M : 0,00% 14,94% 20,82% 91083,3 2,4
Sd: 0,00% 4,35% 4,88% 15086,5811 0,5164
T-: - - - - -

Releif M : 0,00% 14,68% 18,00% 79191,09 3,61
Sd: 0,00% 4,16% 4,66% 17612,9667 1,7457
T-: - -0,2488 -2,3019 -15,1609 27,7553

S.U. M : 0,00% 15,13% 18,17% 81302,90 3,76
Sd: 0,00% 4,13% 4,45% 17036,3733 1,5461
T-: - 0,1733 -2,172 -18,4402 25,2191

Lymphoma IGV M : 0,00% 13,94% 15,70% 34505,1 2
Sd: 0,00% 5,69% 4,04% 4823,8649 0
T-: - - - - -

Releif M : 0,00% 15,12% 17,48% 31975,25 2,1
Sd: 0,00% 4,23% 3,56% 4903,648 0,3078
T-: - 9,4861 7,5627 -11,5928 2,2222

S.U. M : 0,00% 14,68% 16,84% 33206,91 2,17
Sd: 0,00% 4,35% 3,73% 4976,2585 0,3876
T-: - 2,7181 4,0572 -6,5982 4,8421

Challenge 2004 IGV M : 73,04% 97,69% 98,98% 469838,6 3,6
Sd: 1,83% 2,17% 0,76% 40368,9398 0,9661
T-: - - - - -

Releif M : 72,67% 96,57% 98,92% 477245 6,8571
Sd: 2,66% 2,35% 0,83% 72493,7797 11,8767
T-: -1,5641 -3,085 -0,9436 0,7203 1,1081

S.U. M : 70,33% 93,05% 98,98% 526768,4706 27,4706
Sd: 3,52% 5,02% 0,66% 75194,0123 22,5447
T-: -27,6713 -15,3969 0,039 13,1502 17,9936

Table D.21: GRASP-FS based on AF ∗ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast IGV M : 2,95% 37,68% 41,73% 222342,5789 2,3158

Sd: 1,81% 2,63% 3,03% 61885,4074 0,671
T-: - - - - -

Releif M : 1,71% 38,51% 42,44% 224994,9048 3,619
Sd: 2,03% 5,49% 4,92% 55367,8085 2,0366
T-: -12,4987 1,3863 1,4279 0,6924 8,0521

S.U. M : 2,40% 38,57% 42,58% 225513,8 3,76
Sd: 2,00% 4,69% 3,94% 57809,1515 2,6814
T-: -4,9384 1,7459 2,0412 0,9484 11,0531

CNS IGV M : 0,00% 38,17% 39,73% 47693,65 2,5
Sd: 0,00% 2,91% 4,30% 7644,1872 0,513
T-: - - - - -

Releif M : 0,00% 39,25% 40,35% 46407,26 2,69
Sd: 0,00% 5,32% 5,21% 8698,8123 0,8221
T-: - 11,7687 2,1136 -2,1803 3,1569

S.U. M : 0,00% 39,52% 40,48% 46517,42 2,96
Sd: 0,00% 5,75% 4,51% 10174,8784 0,7927
T-: - 10,655 4,0333 -3,0374 18,5473

Colon IGV M : 0,00% 30,81% 34,19% 18425,45 2,5
Sd: 0,00% 9,36% 7,50% 2247,3927 0,513
T-: - - - - -

Releif M : 0,00% 33,39% 33,34% 17562,04 2,56
Sd: 0,00% 11,10% 8,00% 1872,8557 0,5831
T-: - 5,6211 -0,8742 -7,4644 0,9555

S.U. M : 0,00% 33,26% 33,62% 17672,96 2,66
Sd: 0,00% 10,20% 8,62% 2049,4833 0,6794
T-: - 4,8118 -0,5811 -6,1662 5,9775

Leukemia3C IGV M : 0,00% 10,92% 15,47% 50637,1 3,2
Sd: 0,00% 4,76% 4,56% 11815,236 0,7678
T-: - - - - -

Releif M : 0,00% 10,51% 15,24% 49007,82 3,47
Sd: 0,00% 5,92% 5,38% 12282,5541 0,9941
T-: - -2,7295 -1,5672 -2,5568 11,2244

S.U. M : 0,00% 13,63% 18,38% 48295,19 3,80
Sd: 0,00% 5,64% 5,62% 10523,5108 1,2335
T-: - 7,2245 15,0304 -4,6374 12,9474

Leukemia4C IGV M : 5,56% 20,31% 21,78% 51218 2,8
Sd: 0,00% 5,86% 5,01% 13659,6346 0,5231
T-: - - - - -

Releif M : 5,56% 18,03% 21,19% 52367,4091 3,3182
Sd: 0,00% 6,61% 5,02% 11641,2383 0,8937
T-: - -9,6818 -1,8027 1,7274 4,039

S.U. M : 5,56% 21,16% 23,96% 49272,04 3,39
Sd: 0,00% 6,40% 5,57% 11307,4877 1,0331
T-: - 2,2793 4,4906 -2,7077 12,3285

Table D.22: GRASP-FS based on BF ∗ operator (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung IGV M : 5,20% 18,84% 23,01% 102492 7,5

Sd: 0,96% 3,75% 2,18% 19117,1089 3,5615
T-: - - - - -

Releif M : 4,44% 19,69% 23,31% 119604 9,5263
Sd: 0,89% 2,92% 2,21% 31889,6135 4,0328
T-: -10,9499 3,272 10,6436 10,1068 7,0728

S.U. M : 4,48% 18,91% 23,43% 118928,4643 8,9643
Sd: 0,90% 2,90% 1,95% 28017,1016 3,2487
T-: -10,6941 0,2861 17,8207 13,44 5,2834

MLL IGV M : 0,00% 18,39% 18,69% 87102,95 3,4
Sd: 0,00% 7,21% 7,14% 24463,2372 0,5026
T-: - - - - -

Releif M : 0,00% 20,07% 19,38% 100580,4 3,52
Sd: 0,00% 6,27% 8,06% 26346,2383 0,5859
T-: - 2,5155 0,7146 9,6852 4,3283

S.U. M : 0,00% 19,07% 17,04% 90903,0833 3,7083
Sd: 0,00% 5,67% 5,51% 23593,9192 0,55
T-: - 0,9481 -1,6714 2,7517 8,6484

Ovarian IGV M : 0,00% 2,49% 4,77% 116147,15 2
Sd: 0,00% 1,38% 0,84% 28051,4037 0
T-: - - - - -

Releif M : 0,00% 2,96% 4,88% 131238,08 2
Sd: 0,00% 1,19% 0,57% 33942,6977 0
T-: - 17,4382 4,8034 10,7333 -

S.U. M : 0,00% 2,74% 4,86% 121828,4231 2,0385
Sd: 0,00% 1,04% 0,68% 25306,2765 0,1961
T-: - 12,8805 3,7847 3,4807 26

SRBCT IGV M : 0,00% 16,37% 36,71% 21644,45 4
Sd: 0,00% 5,54% 8,64% 3180,9692 0,9177
T-: - - - - -

Releif M : 0,00% 15,63% 37,26% 22892,9565 3,913
Sd: 0,00% 5,93% 7,58% 3315,9412 0,9493
T-: - -1,2502 1,8043 5,8997 -23

S.U. M : 0,00% 15,30% 36,57% 23515,6667 4,2963
Sd: 0,00% 5,67% 5,77% 3263,2916 1,1373
T-: - -4,6675 -0,3901 21,0328 6,1714

9 Tumors IGV M : 33,67% 83,83% 94,00% 50068,9 4,25
Sd: 2,63% 7,10% 2,02% 10269,4184 1,4464
T-: - - - - -

Releif M : 31,75% 83,78% 94,60% 52632,1429 5,7619
Sd: 4,17% 7,65% 2,17% 11559,7217 3,5624
T-: -7,9218 -0,123 9,0383 2,9997 3,6371

S.U. M : 29,70% 82,58% 93,76% 53861,8636 9,2727
Sd: 5,72% 6,79% 2,15% 11467,4542 7,3561
T-: -8,9998 -4,6146 -1,9904 22,114 7,8611

11 Tumors IGV M : 23,07% 38,38% 70,44% 108790,8 6,5
Sd: 1,85% 3,59% 2,33% 18300,101 1,9057
T-: - - - - -

Releif M : 21,89% 36,65% 70,92% 129190,7407 8,9259
Sd: 2,76% 5,75% 2,31% 30885,3226 4,7388
T-: -8,5558 -4,7474 6,0999 15,5863 4,9509

S.U. M : 19,52% 33,00% 71,31% 139472,3182 14,7273
Sd: 4,13% 7,84% 2,09% 37912,4314 9,857
T-: -13,2118 -9,2304 24,5499 15,2895 11,0662

Table D.23: GRASP-FS based on BF ∗ operator (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors IGV M : 61,36% 75,75% 84,44% 267722,7 5,15

Sd: 1,88% 2,02% 1,06% 41283,9675 1,1821
T-: - - - - -

Releif M : 59,96% 72,92% 84,39% 345046,5 7,2917
Sd: 2,81% 4,10% 1,24% 85407,1047 5,4572
T-: -8,1739 -16,8838 -0,7665 17,9623 4,7001

S.U. M : 58,17% 71,78% 84,55% 366748,4211 10,4211
Sd: 3,42% 4,86% 1,39% 91200,1688 7,1594
T-: -16,699 -10,8348 0,7986 52,2682 11,4364

Brain Tumor2 IGV M : 0,00% 46,60% 54,92% 68878,8 3,75
Sd: 0,00% 9,18% 6,95% 12984,9457 0,9105
T-: - - - - -

Releif M : 0,31% 44,80% 55,84% 77108,92 4,04
Sd: 1,54% 12,16% 5,49% 19797,366 1,1358
T-: 25 -2,2484 3,3938 8,2166 7,7263

S.U. M : 0,31% 45,12% 55,07% 78924,8 4,24
Sd: 1,54% 10,00% 4,90% 20275,9427 1,3928
T-: 25 -1,8787 0,5224 10,569 12,6585

Prostate Tumor IGV M : 0,00% 14,86% 18,88% 70317,35 2,4
Sd: 0,00% 2,05% 2,58% 16408,7966 0,5026
T-: - - - - -

Releif M : 0,00% 16,36% 20,11% 71972,5909 2,6818
Sd: 0,00% 4,41% 5,73% 19048,8628 0,5679
T-: - 3,2026 1,7502 1,8778 8,4619

S.U. M : 0,00% 14,93% 18,64% 73897,9643 2,75
Sd: 0,00% 3,57% 4,95% 19228,9211 0,5853
T-: - 1,5056 -0,7445 6,3994 6,5072

Lymphoma IGV M : 0,00% 17,35% 17,32% 27127,5263 2
Sd: 0,00% 2,76% 5,02% 3231,0875 0
T-: - - - - -

Releif M : 0,00% 15,71% 17,58% 26976,4167 2,25
Sd: 0,00% 4,31% 5,28% 2688,9536 0,4423
T-: - -6,6575 1,1285 -0,7875 24

S.U. M : 0,00% 16,39% 17,86% 27125,3214 2,25
Sd: 0,00% 4,22% 5,61% 2876,2523 0,441
T-: - -5,0917 3,3441 -0,0174 28

Challenge 2004 IGV M : 73,48% 96,96% 99,24% 415043,6 3,2
Sd: 2,40% 2,31% 0,48% 98875,5844 0,9515
T-: - - - - -

Releif M : 72,53% 96,40% 98,99% 433345,7727 4,2727
Sd: 3,65% 2,75% 0,81% 88948,0944 3,7184
T-: -1,7883 -2,3851 -4,4462 5,3766 2,1926

S.U. M : 70,59% 95,22% 99,03% 428864,0588 8,1176
Sd: 4,99% 3,08% 0,71% 80982,5494 7,0523
T-: -9,126 -17,2915 -2,8071 3,7511 12,0881

Table D.24: GRASP-FS based on BF ∗ operator (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast BPSO M : 28,40% 47,75% 49,62% 2050392,8 25,7

Sd: 4,79% 5,78% 7,18% 886867,5961 17,1338
T-: - - - - -

PSO M : 14,40% 45,50% 48,21% 577010,2 118,5
Sd: 5,06% 7,74% 4,03% 759776,2244 111,1778
T-: -18,0259 -2,0769 -2,2492 -6,9165 19,5694

PSO-FS M : 6,46% 44,36% 46,47% 102542,30 5,38
Sd: 2,60% 4,43% 7,51% 17754,0898 2,256
T-: -48,149 -11,2067 -2,9835 -9,3308 -21,7026

CNS BPSO M : 26,00% 44,13% 39,80% 125006 28,9
Sd: 4,92% 10,92% 5,94% 30016,4541 16,5627
T-: - - - - -

PSO M : 24,00% 42,60% 40,20% 26223,4 25,5
Sd: 7,83% 6,07% 2,55% 4920,4688 6,4161
T-: -2,3943 -1,7364 1,7786 -24,5769 -7,3395

PSO-FS M : 4,29% 42,29% 45,00% 19902,07 6,5
Sd: 3,31% 7,76% 4,84% 2440,6061 2,8756
T-: -27,3252 -1,7422 22,4811 -26,4133 -106,8027

Colon BPSO M : 28,12% 26,32% 34,65% 35626,6 21
Sd: 5,31% 7,91% 6,27% 6058,3094 14,1343
T-: - - - - -

PSO M : 13,54% 24,95% 31,94% 13023,33 16,83
Sd: 4,49% 3,77% 5,55% 2203,0788 5,7814
T-: -44,9642 -1,5155 -14,0024 -225,4759 -2,5695

PSO-FS M : 3,57% 18,43% 22,95% 12032,78 15,92
Sd: 3,21% 5,04% 3,80% 931,788 1,8172
T-: -67,0097 -7,7737 -54,2854 -181,0441 -3,1696

Leukemia3C BPSO M : 23,33% 33,11% 38,56% 218755 28
Sd: 5,11% 11,56% 13,73% 39573,4139 9,8432
T-: - - - - -

PSO M : 14,44% 35,61% 39,06% 218427,8 110,6
Sd: 2,87% 12,84% 13,28% 322195,4758 78,3684
T-: -17,8885 1,7142 0,455 -0,0186 14,5123

PSO-FS M : 0,00% 5,20% 13,61% 23559,42 10,92
Sd: 0,00% 3,93% 4,76% 2869,3525 3,6682
T-: -52,5 -21,2839 -42,1438 -43,7802 -28,2237

Leukemia4C BPSO M : 21,53% 44,17% 44,31% 20724585,25 379,5
Sd: 3,56% 10,76% 6,63% 57945089,4663 1012,9607
T-: - - - - -

PSO M : 19,44% 22,67% 32,33% 17430041,5 760,7
Sd: 2,93% 4,65% 3,24% 16428369,9522 285,7303
T-: -7,1586 -10,4648 -14,336 -0,1828 1,2094

PSO-FS M : 5,56% 18,57% 25,79% 25305,5 11,35
Sd: 0,00% 7,01% 6,86% 2575,6222 5,1681
T-: -184,0001 -12,4642 -18,9951 -1,1547 -1,175

Table E.1: BPSO compared to PSO and PSO-FS (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung BPSO M : 14,26% 17,41% 26,84% 1446728,5455 36,8182

Sd: 1,54% 4,10% 2,02% 184354,5961 9,8875
T-: - - - - -

PSO M : 10,52% 8,21% 23,62% 105386371,9091 1101
Sd: 0,99% 0,65% 1,76% 57521474,0433 337,3319
T-: -25,8266 -46,0182 -10,2054 30,125 57,6595

PSO-FS M : 6,05% 16,52% 23,89% 102631,16 14,08
Sd: 1,55% 4,46% 2,42% 24304,5501 6,543
T-: -41,4679 -2,1042 -8,6982 -96,8803 -45,9235

MLL BPSO M : 11,11% 29,31% 34,03% 458212,5 31,75
Sd: 0,00% 7,13% 7,60% 150315,2132 13,2004
T-: - - - - -

PSO M : 10,10% 13,94% 21,26% 17698358,8182 756,6364
Sd: 2,25% 3,27% 5,85% 15757423,9802 292,565
T-: -11 -16,0065 -4,5387 4,973 14,4869

PSO-FS M : 0,00% 19,15% 21,20% 43318,53 4
Sd: 0,00% 4,85% 6,20% 12826,3581 1,1547
T-: - -9,9515 -4,5483 -30,4622 -6,4348

Ovarian BPSO M : 7,81% 5,51% 21,32% 4641943,1 28
Sd: 1,95% 4,10% 8,00% 3164713,1098 12,7454
T-: - - - - -

PSO M : 5,47% 1,94% 5,79% 123156899,5 1060,7
Sd: 1,10% 0,65% 2,42% 65328623,9522 297,2063
T-: -30 -16,3954 -31,7583 45,1785 95,8207

PSO-FS M : 0,00% 2,37% 3,82% 77316,38 4,30
Sd: 0,00% 0,86% 0,75% 16833,6634 2,1364
T-: - -13,9139 -36,1982 -22,348 -56,3231

SRBCT BPSO M : 26,98% 19,51% 50,03% 76788,3333 36,7778
Sd: 5,83% 9,24% 7,60% 8630,6454 7,1725
T-: - - - - -

PSO M : 24,76% 5,71% 44,34% 1479923 288,2
Sd: 3,01% 2,12% 3,78% 879876,815 95,5124
T-: -11,0868 -7,2702 -8,5452 30,8607 26,4798

PSO-FS M : 0,00% 4,81% 31,05% 15772 10,1429
Sd: 0,00% 3,73% 4,06% 2505,4457 2,6561
T-: -153 -7,751 -40,8207 -321,6248 -49,8424

9 Tumors BPSO M : 64,67% 71,13% 93,60% 35908875,1 747,7
Sd: 3,22% 13,61% 2,27% 48043880,5583 929,2852
T-: - - - - -

PSO M : 58,67% 67,07% 93,73% 3319807,6 347
Sd: 4,22% 6,99% 1,81% 5329301,5329 256,8078
T-: -8,4665 -2,8633 0,8839 -9,1163 -5,6213

PSO-FS M : 25,56% 77,67% 93,78% 43110 26,75
Sd: 6,25% 7,40% 1,49% 7192,1514 12,7002
T-: -82,207 4,593 1,059 -10,034 -10,1427

Table E.2: BPSO compared to PSO and PSO-FS (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
14 Tumors BPSO M : 68,83% 60,26% 89,09% 2832168 48

Sd: 0 0 0 0 0
T-: - - - - -

PSO M : 66,10% 54,13% 87,57% 449823181,3 2070,4
Sd: 1,78% 19,60% 0,78% 243839378,7599 707,9832
T-: -210 -4,7773 -90 56,5711 245,4369

PSO-FS M : 63,35% 53,19% 86,09% 5568428,11 246,66
Sd: 1,81% 5,27% 0,93% 4446302,803 158,4408
T-: -13,68 -6,0912 -98,5263 5,3523 9,477

Brain Tumor2 BPSO M : 30,77% 58,53% 55,47% 191247482,6667 2245,1667
Sd: 0,00% 13,27% 7,65% 324384557,678 3471,6888
T-: - - - - -

PSO M : 30,77% 46,64% 55,20% 2047552 366,8
Sd: 0,00% 6,54% 7,69% 1818921,7408 141,1034
T-: - -6,6138 -0,4615 -5,9406 -5,1311

PSO-FS M : 6,84% 47,91% 59,56% 30961,66 6,44
Sd: 2,56% 9,87% 5,29% 2334,1047 2,9202
T-: -252 -6,3249 5,3797 -6,004 -6,119

Prostate Tumor BPSO M : 3,85% -100,00% 29,41% 489730425 7516
Sd: 0 0 0 0 0
T-: - - - - -

PSO M : 1,54% 11,61% 36,04% 31462474,7 854,7
Sd: 1,99% 3,12% 6,28% 15709491,2227 217,5035
T-: -10 296,4583 27,7049 -870,8123 -603,9257

PSO-FS M : 2,56% 17,82% 19,56% 32435,33 7,55
Sd: 1,92% 5,91% 4,77% 2194,9423 3,5746
T-: -4,5 608,4 -38,3774 -3051429,8918 -19005,75

Table E.3: BPSO compared to PSO and PSO-FS (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar BPSO M : 14,50% 26,05% 41,95% 100937,6923 34,5385

Sd: 3,00% 3,11% 2,97% 33901,6316 11,3477
T-: - - - - -

PSO M : 13,21% 27,74% 40,53% 48806 25,8
Sd: 2,04% 2,71% 2,49% 29047,0642 4,9454
T-: -2,4668 11,5327 -12,573 -16,4911 -7,6207

PSO-FS M : 12,39% 28,85% 37,97% 18753,55 15,33
Sd: 1,70% 3,79% 2,60% 6358,479 6,1237
T-: -3,9198 3,6266 -19,6928 -28,8949 -13,8796

Spam Base BPSO M : 11,52% 9,00% 16,02% 6317613,7143 47,5714
Sd: 1,08% 0,55% 0,85% 1862506,8041 3,7358
T-: - - - - -

PSO M : 13,67% 9,38% 15,85% 2932467,15 42,38
Sd: 1,14% 0,68% 1,44% 1459185,3135 6,3053
T-: 13,7755 5,3882 -1,5307 -51,3016 -102,89

PSO-FS M : 10,63% 8,81% 14,88% 1362338,77 31,33
Sd: 1,18% 0,26% 0,97% 307982,4086 4,8218
T-: -20,7163 -4,6926 -8,9991 -102,2963 -85,6304

Soybean BPSO M : 11,11% 8,43% 58,82% 1621154,2857 31,5714
Sd: 0,65% 2,17% 0,25% 489379,7182 1,7852
T-: - - - - -

PSO M : 14,77% 6,90% 59,55% 1685985,625 28,12
Sd: 0,81% 0,40% 1,67% 696435,2705 1,7842
T-: 85,4787 -16,0896 8,5798 1,1967 -24,8046

PSO-FS M : 12,87% 6,78% 58,74% 878965,66 24,22
Sd: 0,97% 0,88% 0,32% 144287,2724 2,9486
T-: 12,8524 -17,1175 -1,7628 -30,9545 -29,3658

Arrhythmia BPSO M : 35,00% 39,84% 43,53% 7026933,4545 181,4545
Sd: 1,21% 1,52% 1,48% 4575170,306 68,468
T-: - - - - -

PSO M : 34,85% 41,84% 42,51% 2409928,84 118,84
Sd: 1,17% 1,38% 1,09% 1804344,2202 36,2097
T-: -2,7855 10,1943 -4,2984 -8,922 -6,8885

PSO-FS M : 30,78% 41,28% 42,63% 202856,44 24,44
Sd: 2,25% 2,05% 1,59% 54388,1703 7,9861
T-: -32,9778 10,7636 -3,9413 -14,5123 -23,221

Secom BPSO M : 6,74% 7,19% 8,59% 5484822,5556 26,6667
Sd: 0,19% 1,19% 0,61% 7644231,3287 55,736
T-: - - - - -

PSO M : 6,43% 9,32% 7,87% 850215,35 34,5
Sd: 0,25% 1,04% 0,22% 447837,9589 13,2824
T-: -8,4237 6,0767 -6,0103 -2,0512 0,4749

PSO-FS M : 6,82% 6,61% 10,11% 54114,71 2,28
Sd: 0,14% 0,01% 2,07% 15041,5406 1,2536
T-: 2,4791 -1,6429 4,7949 -2,4035 -1,4791

semeion BPSO M : 16,92% 7,75% 81,11% 36899082,7273 231,0909
Sd: 0,67% 0,27% 0,16% 10396037,6897 12,6843
T-: - - - - -

PSO M : 15,57% 8,49% 81,16% 15039303,91 185
Sd: 0,94% 0,46% 0,23% 6020993,35 17,1199
T-: -8,7289 49,1441 6,6442 -22,0427 -33,8262

PSO-FS M : 15,04% 9,04% 81,22% 8725772,66 161,77
Sd: 0,96% 0,91% 0,15% 2227476,7364 22,3985
T-: -17,414 58,6318 10,6652 -30,7131 -72,93

Table E.4: BPSO compared to PSO and PSO-FS (4)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast PSO M : 14,40% 45,50% 48,21% 577010,2 118,5

Sd: 5,06% 7,74% 4,03% 759776,2244 111,1778
T-: - - - - -

PSO(X2) M : 6,00% 44,89% 45,50% 130109,5 5,73
Sd: 3,05% 6,32% 7,07% 29140,1266 3,8216
T-: -13,0312 -0,5658 -12,7053 -10,5298 -24,2472

PSO(R) M : 6,46% 44,36% 46,47% 102542,30 5,38
Sd: 2,60% 4,43% 7,51% 17754,0898 2,256
T-: -12,1971 -1,0768 -2,0433 -11,1781 -24,3195

PSO(SU) M : 5,54% 41,63% 45,22% 97223,84 6,07
Sd: 3,07% 5,71% 7,34% 18571,835 4,0919
T-: -13,6153 -3,3109 -2,9579 -11,2947 -24,1732

CNS PSO M : 24,00% 42,60% 40,20% 26223,4 25,5
Sd: 7,83% 6,07% 2,55% 4920,4688 6,4161
T-: - - - - -

PSO(X2) M : 5,52% 48,18% 38,57% 21359,10 7,03
Sd: 3,59% 8,35% 6,03% 3240,2455 3,3962
T-: -45,9817 11,8342 -25,6655 -8,4702 -38,2843

PSO(R) M : 4,29% 42,29% 45,00% 19902,07 6,5
Sd: 3,31% 7,76% 4,84% 2440,6061 2,8756
T-: -39,1392 -0,527 56,2576 -11,1025 -39,2452

PSO(SU) M : 5,13% 39,90% 38,21% 18925,38 6,38
Sd: 3,99% 7,83% 9,38% 2081,4884 2,9023
T-: -45,241 -4,4166 -24,4169 -11,0689 -25,8775

Colon PSO M : 13,54% 24,95% 31,94% 13023,3333 16,8333
Sd: 4,49% 3,77% 5,55% 2203,0788 5,7814
T-: - - - - -

PSO(X2) M : 1,72% 22,47% 22,78% 10954,17 7,93
Sd: 2,84% 7,32% 7,84% 1139,6587 3,6246
T-: -66,1745 -4,9147 -15,2147 -28,3555 -28,358

PSO(R) M : 3,57% 18,43% 22,95% 12032,78 15,92
Sd: 3,21% 5,04% 3,80% 931,788 1,8172
T-: -47,4552 -12,5473 -31,813 -8,9329 -3,4279

PSO(SU) M : 4,02% 23,82% 26,45% 13867,92 21,7857
Sd: 4,66% 5,03% 5,98% 3442,1121 9,0569
T-: -52,4619 -6,0324 -18,4339 8,0522 18,7354

Leukemia3C PSO M : 14,44% 35,61% 39,06% 218427,8 110,6
Sd: 2,87% 12,84% 13,28% 322195,4758 78,3684
T-: - - - - -

PSO(X2) M : 0,00% 4,76% 15,27% 31223,76 24,04
Sd: 0,00% 5,64% 5,28% 7299,1366 10,8031
T-: -65 -46,5161 -24,5602 -11,0189 -15,2622

PSO(R) M : 0,00% 5,20% 13,61% 23559,42 10,92
Sd: 0,00% 3,93% 4,76% 2869,3525 3,6682
T-: -65 -44,5055 -27,3689 -11,471 -17,6082

PSO(SU) M : 0,00% 6,84% 15,47% 22457,92 11,84
Sd: 0,00% 8,63% 5,33% 3629,9319 7,5922
T-: -65 -43,5143 -24,547 -11,5357 -17,41

Table E.5: PSO-FS: filter impact (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU # Attrib
Leukemia4C PSO M : 19,44% 22,67% 32,33% 17430041,5 760,7

Sd: 2,93% 4,65% 3,24% 16428369,9522 285,7303
T-: - - - - -

PSO(X2) M : 5,56% 13,91% 18,51% 65334,06 57,62
Sd: 0,00% 4,07% 2,04% 23079,1421 19,6731
T-: -50 -50,4243 -75,4763 -9,4091 -20,3563

PSO(R) M : 5,56% 18,57% 25,79% 25305,5 11,3571
Sd: 0,00% 7,01% 6,86% 2575,6222 5,1681
T-: -50 -19,4608 -11,6416 -9,4307 -21,7012

PSO(SU) M : 5,56% 20,74% 24,54% 23764,91 11,66
Sd: 0,00% 7,24% 7,51% 3886,0856 8,1613
T-: -50 -12,1442 -10,1345 -9,4316 -21,6687

Lung PSO M : 10,52% 8,21% 23,62% 105386371,9091 1101
Sd: 0,99% 0,65% 1,76% 57521474,0433 337,3319
T-: - - - - -

PSO(X2) M : 5,88% 8,92% 20,56% 859882,72 134,2
Sd: 0,00% 2,14% 1,41% 704337,2295 79,7329
T-: -71,5 27,9319 -67,4531 -30,294 -50,6959

PSO(R) M : 6,05% 16,52% 23,89% 102631,16 14,08
Sd: 1,55% 4,46% 2,42% 24304,5501 6,543
T-: -27,3959 22,2895 2,1188 -30,5148 -58,8815

PSO(SU) M : 5,23% 10,23% 23,47% 3039050,25 171,41
Sd: 0,97% 5,37% 2,36% 8038525,2874 217,0406
T-: -62,4602 4,4283 -0,6342 -25,2937 -17,1251

MLL PSO M : 10,10% 13,94% 21,26% 17698358,8182 756,6364
Sd: 2,25% 3,27% 5,85% 15757423,9802 292,565
T-: - - - - -

PSO(X2) M : 0,00% 15,10% 12,68% 53434,51 6,82
Sd: 0,00% 6,06% 5,50% 18741,0901 2,5223
T-: -110 5,5962 -408,5647 -5,0898 -15,0409

PSO(R) M : 0,00% 19,15% 21,20% 43318,53 4
Sd: 0,00% 4,85% 6,20% 12826,3581 1,1547
T-: -110 11,465 -0,2993 -5,0927 -15,0976

PSO(SU) M : 0,00% 16,37% 23,25% 39921,69 10,46
Sd: 0,00% 4,08% 7,72% 5011,7775 7,1369
T-: -110 6,3906 1,9479 -5,0937 -14,9679

Ovarian PSO M : 5,47% 1,94% 5,79% 123156899,5 1060,7
Sd: 1,10% 0,65% 2,42% 65328623,9522 297,2063
T-: - - - - -

PSO(X2) M : 0,00% 3,13% 5,41% 56532,29 2,81
Sd: 0,00% 1,52% 1,48% 14053,6897 0,9214
T-: -70 33,2185 -4,3433 -47,0693 -98,2248

PSO(R) M : 0,00% 2,37% 3,82% 77316,38 4,30
Sd: 0,00% 0,86% 0,75% 16833,6634 2,1364
T-: -70 7,0354 -19,8025 -47,0614 -98,0794

PSO(SU) M : 0,00% 3,28% 4,92% 49072,78 4,28
Sd: 0,00% 1,06% 1,18% 6420,8494 1,7728
T-: -70 20,546 -9,9167 -47,0722 -98,0773

Table E.6: PSO-FS: filter impact (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
SRBCT PSO M : 24,76% 5,71% 44,34% 1479923 288,2

Sd: 3,01% 2,12% 3,78% 879876,815 95,5124
T-: - - - - -

PSO(X2) M : 0,00% 2,67% 33,14% 43836,06 45,6
Sd: 0,00% 1,80% 3,80% 16531,3243 17,4427
T-: -259,9999 -27,5833 -22,1878 -31,5857 -25,5907

PSO(R) M : 0,00% 4,81% 31,05% 15772 10,14
Sd: 0,00% 3,73% 4,06% 2505,4457 2,6561
T-: -259,9999 -10,8209 -27,1427 -32,2029 -29,3303

PSO(SU) M : 0,00% 6,25% 33,48% 36055,45 31,45
Sd: 0,00% 2,97% 4,09% 43593,0275 34,1624
T-: -259,9999 1,9045 -16,8416 -31,7222 -26,3104

9 Tumors PSO M : 58,67% 67,07% 93,73% 3319807,6 347
Sd: 4,22% 6,99% 1,81% 5329301,5329 256,8078
T-: - - - - -

PSO(X2) M : 29,14% 66,99% 94,00% 72648,25 46,85
Sd: 3,28% 3,92% 1,43% 24721,4531 13,9579
T-: -54,5739 -0,6888 2,5 -62,5799 -54,5301

PSO(R) M : 25,56% 77,67% 93,78% 43110 26,75
Sd: 6,25% 7,40% 1,49% 7192,1514 12,7002
T-: -61,1684 121,1484 0,2647 -63,148 -56,8255

PSO(SU) M : 28,33% 73,72% 94,22% 46030,5 29,83
Sd: 4,14% 7,82% 1,71% 13055,8242 15,2246
T-: -44,8189 13,9355 3,4612 -63,089 -56,0108

11 Tumors PSO M : 25,23% 22,53% 72,90% 234685193,8 1872,2
Sd: 1,29% 24,53% 1,35% 109706988,8342 534,4619
T-: - - - - -

PSO(X2) M : 13,89% 12,43% 71,32% 693765,22 126,51
Sd: 2,70% 4,47% 1,53% 490053,6127 59,5117
T-: -55,3742 -6,4503 -11,1563 -28,8709 -45,7824

PSO(R) M : 17,15% 6,44% 69,78% 10463843,36 491
Sd: 1,19% 1,17% 1,91% 6882215,4065 127,5429
T-: -35,8925 -10,2904 -19,2586 -27,5738 -34,1158

PSO(SU) M : 17,90% 7,39% 72,56% 13698938,87 562,87
Sd: 1,90% 1,51% 1,78% 7599803,7471 138,1629
T-: -22,7684 -9,5876 -2,1125 -26,9806 -28,5542

14 Tumors PSO M : 66,10% 54,13% 87,57% 449823181,3 2070,4
Sd: 1,78% 19,60% 0,78% 243839378,7599 707,9832
T-: - - - - -

PSO(X2) M : 58,04% 65,46% 85,57% 650084,42 48,61
Sd: 2,49% 4,00% 1,07% 241460,8851 27,5232
T-: -218,2503 8,8287 -21,7398 -56,8472 -244,364

PSO(R) M : 63,35% 53,19% 86,09% 5568428,11 246,66
Sd: 1,81% 5,27% 0,93% 4446302,803 158,4408
T-: -6,8724 -0,5437 -42,5497 -56,1075 -80,9674

PSO(SU) M : 58,60% 57,53% 86,77% 1063387,75 95
Sd: 2,35% 6,10% 1,63% 792778,0725 67,4516
T-: -311,3004 2,458 -5,3789 -56,7757 -111,8282

Table E.7: PSO-FS: filter impact (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Brain Tumor2 PSO M : 30,77% 46,64% 55,20% 2047552 366,8

Sd: 0,00% 6,54% 7,69% 1818921,7408 141,1034
T-: - - - - -

PSO(X2) M : 7,69% 48,90% 56,60% 41058 4,12
Sd: 4,54% 11,63% 5,20% 8980,4589 2,0283
T-: -72 2,903 5,4194 -14,2096 -29,2009

PSO(R) M : 6,84% 47,91% 59,56% 30961,66 6,44
Sd: 2,56% 9,87% 5,29% 2334,1047 2,9202
T-: -252 1,4292 8,82 -14,2811 -29,0117

PSO(SU) M : 8,55% 45,96% 55,29% 30155,77 7
Sd: 4,62% 8,10% 4,20% 5244,7227 2,5981
T-: -29,25 -0,3947 0,5294 -14,2868 -28,9648

Prostate Tumor PSO M : 1,54% 11,61% 36,04% 31462474,7 854,7
Sd: 1,99% 3,12% 6,28% 15709491,2227 217,5035
T-: - - - - -

PSO(X2) M : 1,23% 17,71% 22,02% 39862,44 5,6
Sd: 1,83% 6,30% 6,02% 7960,1359 2,708
T-: -1,2144 15,8462 -55,4992 -59,71 -76,9744

PSO(R) M : 2,56% 17,82% 19,56% 32435,33 7,55
Sd: 1,92% 5,91% 4,77% 2194,9423 3,5746
T-: 2,7974 14,6767 -46,9629 -59,7241 -76,7544

PSO(SU) M : 0,00% 22,02% 25,88% 40458,14 19,28
Sd: 0,00% 9,01% 7,85% 13718,2349 14,2912
T-: -6,6667 13,3878 -9,8002 -59,7087 -75,3078

Lymphoma PSO M : 5,88% 2,09% 16,31% 476913,5455 193,6364
Sd: 3,72% 2,07% 2,80% 316990,5845 64,7337
T-: - - - - -

PSO(X2) M : 0,00% 11,00% 13,47% 17082,11 7,62
Sd: 0,00% 4,40% 4,81% 3210,0859 4,2621
T-: -11 46,5532 -19,0414 -19,6224 -32,6658

PSO(R) M : 0,00% 13,80% 17,20% 13130,92 2,53
Sd: 0,00% 6,53% 6,81% 1177,8929 1,3914
T-: -11 45,1884 6,4974 -19,7911 -33,5594

PSO(SU) M : 0,00% 14,59% 16,06% 12316,42 2,64
Sd: 0,00% 6,69% 6,14% 630,5459 1,0818
T-: -11 24,2297 -1,8748 -19,8259 -33,5368

Table E.8: PSO-FS: filter impact (4)



249

Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar PSO M : 13,21% 27,74% 40,53% 48806 25,8

Sd: 2,04% 2,71% 2,49% 29047,0642 4,9454
T-: - - - - -

PSO(X2) M : 11,97% 29,81% 38,82% 17642,70 13,33
Sd: 1,80% 2,94% 1,92% 3854,8746 3,8431
T-: -21,3768 12,7971 -21,0284 -20,026 -49,1522

PSO(R) M : 12,39% 28,85% 37,97% 18753,55 15,33
Sd: 1,70% 3,79% 2,60% 6358,479 6,1237
T-: -6,7702 1,4109 -12,9701 -17,5639 -12,2663

PSO(SU) M : 12,39% 28,10% 38,97% 17513,33 13,88
Sd: 1,70% 2,17% 1,40% 2840,1292 2,3154
T-: -2,6267 0,7275 -17,4658 -19,9511 -46,9618

Spam Base PSO M : 13,67% 9,38% 15,85% 2932467,1538 42,3846
Sd: 1,14% 0,68% 1,44% 1459185,3135 6,3053
T-: - - - - -

PSO(X2) M : 10,81% 10,79% 14,84% 371474,44 10,84
Sd: 0,66% 1,15% 1,84% 113243,2237 3,0643
T-: -18,8552 23,1142 -7,396 -54,7106 -397,6685

PSO(R) M : 10,63% 8,81% 14,88% 1362338,77 31,33
Sd: 1,18% 0,26% 0,97% 307982,4086 4,8218
T-: -20,1807 -9,2225 -14,7035 -32,3276 -58,9296

PSO(SU) M : 10,72% 10,10% 14,04% 573159,55 14,77
Sd: 0,71% 1,16% 1,47% 234552,3861 5,7831
T-: -19,4845 6,5074 -10,3859 -40,04 -39,8948

Soybean PSO M : 14,77% 6,90% 59,55% 1685985,625 28,125
Sd: 0,81% 0,40% 1,67% 696435,2705 1,7842
T-: - - - - -

PSO(X2) M : 12,45% 5,95% 58,81% 923356,29 19,66
Sd: 1,14% 0,61% 0,23% 243657,8256 2,3697
T-: -39,0108 -147,1236 -9,8302 -15,6669 -59,6934

PSO(R) M : 12,87% 6,78% 58,74% 878965,66 24,22
Sd: 0,97% 0,88% 0,32% 144287,2724 2,9486
T-: -14,589 -6,9534 -10,4588 -16,6105 -13,9203

PSO(SU) M : 13,19% 6,35% 58,84% 877601,88 20,77
Sd: 0,59% 0,47% 0,26% 135333,8116 2,6352
T-: -16,7095 -55,8397 -9,4694 -16,0724 -21,8664

Table E.9: PSO-FS: filter impact (5)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Arrhytmia PSO M : 34,85% 41,84% 42,51% 2409928,8462 118,8462

Sd: 1,17% 1,38% 1,09% 1804344,2202 36,2097
T-: - - - - -

PSO(X2) M : 29,95% 38,59% 43,13% 330978,38 39,46
Sd: 1,14% 1,94% 1,31% 100660,2858 11,8566
T-: -183,5646 -20,0276 7,2856 -9,6167 -12,8678

PSO(R) M : 30,78% 41,28% 42,63% 202856,44 24,44
Sd: 2,25% 2,05% 1,59% 54388,1703 7,9861
T-: -33,1456 -3,1734 1,3524 -10,2072 -15,0888

PSO(SU) M : 27,63% 36,75% 42,82% 164293 21,11
Sd: 1,06% 1,69% 0,92% 55652,0992 8,0069
T-: -211,815 -30,176 1,7123 -10,3879 -15,7562

Secom PSO M : 6,43% 9,32% 7,87% 850215,3571 34,5
Sd: 0,25% 1,04% 0,22% 447837,9589 13,2824
T-: - - - - -

PSO(X2) M : 6,44% 6,77% 9,86% 69585,32 4,4
Sd: 0,20% 0,12% 1,27% 17333,3361 2,0817
T-: 0,3722 -109,4951 38,1771 -62,1547 -43,9205

PSO(R) M : 6,82% 6,61% 10,11% 54114,71 2,28
Sd: 0,14% 0,01% 2,07% 15041,5406 1,2536
T-: 15,4952 -118,5639 7,6361 -62,1006 -44,6545

PSO(SU) M : 6,20% 6,78% 10,34% 66641,37 4,37
Sd: 0,27% 0,12% 1,80% 21232,9847 2,0659
T-: -5,4223 -76,7783 24,1928 -62,0962 -42,5301

semeion PSO M : 15,57% 8,49% 81,16% 15039303,9167 185
Sd: 0,94% 0,46% 0,23% 6020993,35 17,1199
T-: - - - - -

PSO(X2) M : 14,97% 8,99% 81,17% 9103508,16 157,04
Sd: 1,02% 0,75% 0,16% 2681529,3461 19,7978
T-: -4,0495 12,9834 1,0845 -14,9188 -18,9787

PSO(R) M : 15,04% 9,04% 81,22% 8725772,66 161,77
Sd: 0,96% 0,91% 0,15% 2227476,7364 22,3985
T-: -3,295 25,9422 5,0679 -15,6321 -19,6707

PSO(SU) M : 14,45% 9,53% 81,13% 6897631,22 147,55
Sd: 1,05% 1,27% 0,16% 1832543,704 25,6228
T-: -7,4023 17,4509 -1,8221 -20,7458 -34,1324

Table E.10: PSO-FS: filter impact (6)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast PSO M : 14,80% 40,79% 50,21% 14989102,5 258,7

Sd: 6,27% 8,29% 3,43% 15819583,1527 248,8641
T-: - - - - -

PSO-FS M : 5,45% 43,66% 48,11% 6523488,90 8,77
Sd: 2,32% 5,08% 7,07% 974605,1308 5,5027
T-: -32,4833 2,8927 -12,9833 -7,9275 -13,6052

PSO-FS2 M : 5,90% 43,93% 47,62% 185937,05 6,27
Sd: 2,39% 5,08% 4,76% 54593,0167 3,2737
T-: -31,2413 3,1797 -23,9426 -13,8624 -13,7411

CNS PSO M : 14,00% 42,67% 39,27% 594637,2 34,6
Sd: 5,84% 3,96% 5,30% 357285,9256 10,8853
T-: - - - - -

PSO-FS M : 6,11% 43,83% 39,89% 626050,95 10,08
Sd: 5,53% 7,11% 7,13% 41364,6168 4,7996
T-: -9,9522 1,9433 5,4332 11,7969 -68,0987

PSO-FS2 M : 4,81% 44,59% 38,19% 45227,41 7,30
Sd: 3,36% 6,87% 6,58% 14591,6518 3,6354
T-: -12,3939 3,1546 -4,9445 -241,4646 -73,0577

Colon PSO M : 9,66% 24,34% 31,55% 98361,7273 20,0909
Sd: 3,26% 4,79% 4,25% 47964,3065 3,5058
T-: - - - - -

PSO-FS M : 1,30% 22,39% 26,75% 63126,29 20,33
Sd: 2,59% 5,00% 3,39% 5767,6176 7,4464
T-: -26,5614 -2,9332 -26,4308 -27,1004 1,4205

PSO-FS2 M : 3,78% 21,85% 25,43% 19526,95 13,41
Sd: 3,89% 6,69% 6,78% 6988,6066 6,9906
T-: -18,6549 -3,7732 -33,0296 -60,545 -66,9573

Leukemia3C PSO M : 16,11% 28,17% 40,44% 6904625,6 311,2
Sd: 1,76% 11,08% 8,46% 9670346,2715 303,2439
T-: - - - - -

PSO-FS M : 0,00% 7,07% 12,07% 679008,04 16,40
Sd: 0,00% 7,10% 3,56% 21224,5251 8,5449
T-: -32,2222 -13,025 -68,4997 -99,8387 -29,2329

PSO-FS2 M : 0,00% 5,73% 13,23% 59425,78 14,47
Sd: 0,00% 6,67% 6,08% 35213,4072 12,4572
T-: -32,2222 -14,0725 -65,7358 -109,7752 -29,4344

Leukemia4C PSO M : 17,78% 23,89% 35,44% 39871876,9 935,5
Sd: 2,34% 3,76% 4,47% 21888598,925 235,0316
T-: - - - - -

PSO-FS M : 5,56% 21,24% 21,57% 658471,13 25,68
Sd: 0,00% 6,72% 5,27% 72146,103 12,6581
T-: -110 -33,5397 -55,2175 -59,0573 -120,4083

PSO-FS2 M : 5,56% 17,76% 23,14% 58339,39 17,5
Sd: 0,00% 6,37% 5,41% 20214,3319 11,3727
T-: -110 -25,5185 -50,8836 -59,9612 -121,5848

Table E.11: PSO-FS: Multi-filters (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung PSO M : 10,78% 8,55% 22,87% 262280152,6 1617,4

Sd: 1,91% 0,67% 1,89% 119376285,4008 367,9068
T-: - - - - -

PSO-FS M : 4,96% 9,04% 23,23% 24327274,11 452,76
Sd: 1,01% 4,46% 1,80% 35803172,709 494,1124
T-: -50,43 0,6854 1,3282 -36,8833 -32,8044

PSO-FS2 M : 5,83% 8,79% 20,74% 3277129,83 178,51
Sd: 0,32% 3,32% 1,71% 3779166,1201 126,0449
T-: -50,5351 2,3275 -8,5794 -41,0104 -58,012

MLL PSO M : 11,11% 20,89% 23,11% 110196512,3 1817,1
Sd: 0,00% 15,21% 5,13% 63219803,2856 657,5251
T-: - - - - -

PSO-FS M : 0,00% 14,66% 23,02% 2244662,38 58,44
Sd: 0,00% 6,17% 4,39% 109637,0996 44,4075
T-: - -7,0578 -0,2632 -639,8892 -47,1393

PSO-FS2 M : 0,00% 14,72% 14,87% 99694,33 7,30
Sd: 0,00% 5,36% 7,02% 68273,9982 3,7252
T-: - -7,0806 -49,554 -653,0878 -48,6372

Ovarian PSO M : 6,64% 11,83% 4,54% 356989523,125 2078,375
Sd: 0,72% 13,13% 1,89% 117505367,7324 468,4003
T-: - - - - -

PSO-FS M : 0,00% 2,80% 4,54% 1369084,58 4,52
Sd: 0,00% 0,40% 1,04% 22981,9931 2,3216
T-: -45,3333 -3,0221 -0,0305 -17,7388 -18,3399

PSO-FS2 M : 0,00% 3,05% 4,37% 172204,92 3,46
Sd: 0,00% 1,32% 1,08% 113087,782 0,9772
T-: -45,3333 -2,9384 -0,9042 -17,7985 -18,3494

SRBCT PSO M : 17,99% 5,75% 43,47% 2702994 346,3333
Sd: 5,20% 6,05% 2,93% 1675240,1434 165,2188
T-: - - - - -

PSO-FS M : 0,00% 4,79% 33,08% 120370,12 37,56
Sd: 0,00% 4,82% 6,47% 82681,815 36,2031
T-: -153 -4,5602 -44,6688 -12,5258 -15,909

PSO-FS2 M : 0,00% 5,39% 31,18% 29495,14 14,12
Sd: 0,00% 3,54% 4,74% 8994,8415 7,5802
T-: -153 -1,9213 -50,7726 -12,9666 -17,1164

9 Tumors PSO M : 55,56% 71,48% 94,74% 874830 149,8889
Sd: 5,77% 10,81% 1,35% 489574,27 116,9406
T-: - - - - -

PSO-FS M : 30,53% 69,82% 94,28% 476369,36 50
Sd: 4,05% 5,92% 2,18% 51782,9044 18,3242
T-: -20,0047 -1,6984 -3,2697 -8,7633 -7,688

PSO-FS2 M : 27,48% 73,07% 94,00% 89345,97 31,97
Sd: 4,27% 7,43% 2,02% 25118,2624 14,2364
T-: -22,5909 1,6544 -5,2587 -17,2751 -9,0785

Table E.12: PSO-FS: Multi-filters (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors PSO M : 23,74% 45,72% 72,57% 326287385,5556 2537,8889

Sd: 2,00% 35,77% 1,47% 179105755,9801 735,6314
T-: - - - - -

PSO-FS M : 18,06% 8,01% 71,67% 29800745 748,44
Sd: 2,40% 4,90% 1,86% 11605883,9798 241,8688
T-: -40,4495 -17,7607 -6,9181 -44,554 -49,5458

PSO-FS2 M : 15,45% 8,45% 71,77% 5459088,55 271,77
Sd: 2,20% 3,20% 2,09% 5178874,5277 134,7704
T-: -58,8473 -17,5536 -5,7951 -48,537 -64,7175

14 Tumors PSO M : 66,75% 63,12% 87,23% 552404446,2 2526,9
Sd: 1,10% 17,04% 1,15% 165292469,6776 463,5459
T-: 0 0 0 0 0

PSO-FS M : 60,82% 54,10% 86,16% 3911628,94 141,16
Sd: 2,00% 3,34% 0,84% 872627,1664 36,7011
T-: -59,9583 -5,902 -4,9113 -52,5189 -154,2766

PSO-FS2 M : 58,96% 62,38% 85,69% 1727936,35 74,92
Sd: 2,03% 6,66% 1,04% 1237781,8377 52,115
T-: -145,5213 -0,4872 -7,0921 -52,7287 -161,1389

Brain Tumor2 PSO M : 30,77% 45,22% 54,25% 25252029,0952 938
Sd: 0,00% 3,58% 6,68% 15765058,7788 313,9256
T-: - - - - -

PSO-FS M : 3,37% 52,50% 58,15% 1272232 11,62
Sd: 3,94% 9,35% 4,51% 208896,0895 4,3493
T-: -130,2857 57,841 8,0214 -69,6755 -175,0994

PSO-FS2 M : 9,57% 48,55% 57,46% 72471,34 4,85
Sd: 5,65% 13,25% 6,31% 22716,5443 2,4654
T-: -149,4516 5,2163 66,7848 -73,1902 -176,5398

Prostate Tumor PSO M : 1,28% 30,82% 32,75% 181622434,1667 2175,5
Sd: 1,89% 16,90% 5,28% 70355673,1626 593,58
T-: 0 0 0 0 0

PSO-FS M : 0,00% 11,45% 23,75% 1646577,81 92,25
Sd: 0,00% 2,71% 4,37% 348646,3169 71,9949
T-: -12 -23,1453 -39,3629 -707,4502 -204,1891

PSO-FS2 M : 1,25% 18,43% 22,39% 77045,60 6,02
Sd: 1,82% 5,26% 6,62% 23842,5382 3,1281
T-: -0,2692 -14,8792 -29,3406 -727,1205 -403,5891

Lymphoma PSO M : 6,47% 1,58% 17,45% 7289321,2 454,8
Sd: 4,34% 1,72% 2,25% 3538625,7463 78,2387
T-: - - - - -

PSO-FS M : 0,00% 15,62% 18,52% 224784,5 3,22
Sd: 0,00% 4,80% 5,66% 3034,4406 1,896
T-: -12,2222 80,5281 3,158 -32,248 -1593,91

PSO-FS2 M : 0,00% 12,51% 14,04% 27030,34 3,56
Sd: 0,00% 5,78% 5,34% 7993,7106 1,8848
T-: -12,2222 43,2493 -13,0834 -33,1507 -1596,8734

Table E.13: PSO-FS: Multi-filters (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Sonar PSO M : 12,24% 27,19% 40,35% 31605,2727 23,5455

Sd: 2,76% 2,43% 2,24% 6516,7455 4,298
T-: - - - - -

PSO-FS M : 11,97% 28,13% 38,91% 16108,33 13,27
Sd: 2,04% 2,58% 2,11% 3661,0476 2,3962
T-: -1,2355 5,2451 -24,6444 -11,9608 -13,1816

PSO-FS2 M : 12,11% 27,67% 39,30% 32962,75 14,93
Sd: 1,93% 3,19% 1,95% 13987,2921 4,337
T-: -1,1359 6,177 -10,2563 1,0507 -11,1887

Spam Base PSO M : 14,06% 9,71% 15,62% 2003230 38,1
Sd: 1,01% 1,13% 2,01% 450056,7096 4,9766
T-: - - - - -

PSO-FS M : 9,83% 9,55% 13,75% 513861,77 13,94
Sd: 0,94% 0,76% 1,98% 145717,9986 3,7803
T-: -36,0939 -2,9991 -9,4577 -47,8746 -72,5492

PSO-FS2 M : 10,58% 10,04% 14,14% 907429,20 15,05
Sd: 0,77% 1,39% 2,00% 429717,5333 7,3804
T-: -28,8566 5,7659 -13,7928 -34,4666 -79,2002

Soybean PSO M : 12,76% 7,23% 60,49% 1326505,0909 27,3636
Sd: 1,92% 0,54% 2,31% 145369,2342 2,1106
T-: - - - - -

PSO-FS M : 12,93% 6,30% 58,98% 887488,5 21,11
Sd: 0,44% 0,48% 1,09% 120433,3917 2,1113
T-: 1,1227 -12,9032 -5,7104 -21,0433 -24,0603

PSO-FS2 M : 13,06% 6,20% 58,91% 1526667,09 20,71
Sd: 0,83% 0,74% 0,76% 470670,6078 3,218
T-: 1,9955 -14,6107 -5,9657 11,7062 -43,6658

Arrhythmia PSO M : 33,95% 41,09% 42,72% 1756141,0909 109,3636
Sd: 1,07% 2,30% 0,55% 761999,0311 17,7329
T-: - - - - -

PSO-FS M : 26,55% 36,78% 42,84% 182711 23,88
Sd: 1,46% 1,95% 0,88% 48903,0314 6,8246
T-: -252,9999 -16,0584 3,9012 -18,7317 -62,2445

PSO-FS2 M : 28,14% 37,89% 43,18% 354455,17 26,77
Sd: 1,64% 2,36% 1,25% 113644,6349 9,1329
T-: -117,5489 -11,9218 9,3242 -16,6906 -60,8355

Secom PSO M : 6,41% 9,34% 7,75% 681233,5 35,5
Sd: 0,24% 1,13% 0,16% 366131,4789 14,5239
T-: - - - - -

PSO-FS M : 6,06% 6,78% 10,71% 75904,55 4,77
Sd: 0,32% 0,11% 0,85% 9476,9187 1,166
T-: -9,6912 -85,9831 124,3101 -35,2093 -32,3365

PSO-FS2 M : 6,36% 6,84% 9,67% 138875,61 4,76
Sd: 0,28% 0,23% 1,55% 57824,3409 2,9061
T-: -1,6572 -85,9674 78,8573 -31,3938 -32,3476

semeion PSO M : 14,76% 9,15% 81,17% 9704920,1818 158,2727
Sd: 1,49% 0,27% 0,16% 1828334,9384 6,4667
T-: - - - - -

PSO-FS M : 13,37% 9,21% 81,16% 6984514,77 149,27
Sd: 0,92% 0,48% 0,18% 914462,7034 8,6691
T-: -20,8352 1,5122 -0,784 -24,1223 -9,2728

PSO-FS2 M : 14,45% 8,95% 81,13% 16115367,55 160,075
Sd: 0,95% 0,79% 0,18% 5351789,3788 18,4007
T-: -7,2709 -5,6025 -2,2559 35,2408 1,8238

Table E.14: PSO-FS: Multi-filters (4)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast CLPSO M : 14,80% 40,79% 50,21% 14989102,5 258,7

Sd: 6,27% 8,29% 3,43% 15819583,1527 248,8641
T-: - - - - -

PSO(R) M : 6,46% 44,36% 46,47% 102542,30 5,38
Sd: 2,60% 4,43% 7,51% 17754,0898 2,256
T-: -27,4308 3,6661 -4,3698 -13,9405 -13,7894

CLPSO(R) M : 5,70% 44,24% 45,37% 6966383,54 8,57
Sd: 2,65% 4,78% 5,38% 1086915,3481 3,9924
T-: -31,5457 3,585 -37,3314 -7,5113 -13,6155

CNS CLPSO M : 14,00% 42,67% 39,27% 594637,2 34,6
Sd: 5,84% 3,96% 5,30% 357285,9256 10,8853
T-: - - - - -

PSO(R) M : 4,29% 42,29% 45,00% 19902,07 6,5
Sd: 3,31% 7,76% 4,84% 2440,6061 2,8756
T-: -12,2244 -0,452 56,0055 -253,268 -69,9257

CLPSO(R) M : 1,62% 40,26% 43,25% 622270,06 7,84
Sd: 2,90% 7,29% 6,22% 54263,7199 3,3552
T-: -16,5309 -3,9594 15,8843 10,5845 -74,121

Colon CLPSO M : 9,66% 24,34% 31,55% 98361,7273 20,0909
Sd: 3,26% 4,79% 4,25% 47964,3065 3,5058
T-: - - - - -

PSO(R) M : 3,57% 18,43% 22,95% 12032,78 15,92
Sd: 3,21% 5,04% 3,80% 931,788 1,8172
T-: -16,7143 -7,1927 -30,9611 -66,2385 -41,9148

CLPSO(R) M : 3,57% 19,32% 23,98% 62126,51 14,91
Sd: 4,09% 4,66% 4,23% 3412,6605 5,1983
T-: -19,07 -7,585 -37,4967 -27,8814 -34,632

Leukemia3C CLPSO M : 16,11% 28,17% 40,44% 6904625,6 311,2
Sd: 1,76% 11,08% 8,46% 9670346,2715 303,2439
T-: - - - - -

PSO(R) M : 0,00% 5,20% 13,61% 23559,42 10,92
Sd: 0,00% 3,93% 4,76% 2869,3525 3,6682
T-: -32,2222 -14,3212 -70,1638 -110,3503 -29,788

CLPSO(R) M : 0,00% 6,40% 10,59% 669026,93 10,36
Sd: 0,00% 6,53% 5,32% 50593,7262 4,4639
T-: -32,2222 -13,5849 -77,0924 -99,7463 -29,8423

Leukemia4C CLPSO M : 17,78% 23,89% 35,44% 39871876,9 935,5
Sd: 2,34% 3,76% 4,47% 21888598,925 235,0316
T-: - - - - -

PSO(R) M : 5,56% 18,57% 25,79% 25305,5 11,35
Sd: 0,00% 7,01% 6,86% 2575,6222 5,1681
T-: -110 -34,932 -17,3851 -60,0109 -122,4008

CLPSO(R) M : 5,56% 17,22% 23,99% 703333,02 19,85
Sd: 0,00% 5,50% 4,15% 14850,1825 8,8013
T-: -110 -67,4772 -68,3489 -58,9898 -121,1695

Table E.15: CLPSO based Relief vs random CLPSO and PSO-FS (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung CLPSO M : 10,78% 8,55% 22,87% 262280152,6 1617,4

Sd: 1,91% 0,67% 1,89% 119376285,4008 367,9068
T-: - - - - -

PSO(R) M : 6,05% 16,52% 23,89% 102631,16 14,08
Sd: 1,55% 4,46% 2,42% 24304,5501 6,543
T-: -26,4702 20,947 3,6805 -41,5174 -65,5923

CLPSO(R) M : 7,14% 10,85% 23,18% 2947791,46 126,53
Sd: 2,15% 4,00% 1,51% 1650031,1773 105,5443
T-: -26,669 29,4946 1,1902 -41,0666 -60,508

MLL CLPSO M : 11,11% 20,89% 23,11% 110196512,3 1817,1
Sd: 0,00% 15,21% 5,13% 63219803,2856 657,5251
T-: - - - - -

PSO(R) M : 0,00% 19,15% 21,20% 43318,53 4
Sd: 0,00% 4,85% 6,20% 12826,3581 1,1547
T-: - -1,8232 -7,2688 -653,3314 -48,7261

CLPSO(R) M : 0,00% 14,50% 18,43% 2096728,14 10,75
Sd: 0,00% 6,71% 6,05% 57640,0522 4,758
T-: - -7,0107 -19,2878 -641,2373 -48,5439

Ovarian CLPSO M : 6,64% 11,83% 4,54% 356989523,125 2078,375
Sd: 0,72% 13,13% 1,89% 117505367,7324 468,4003
T-: - - - - -

PSO(R) M : 0,00% 2,37% 3,82% 77316,38 4,30
Sd: 0,00% 0,86% 0,75% 16833,6634 2,1364
T-: -45,3333 -3,1662 -3,6666 -17,8032 -18,3419

CLPSO(R) M : 0,00% 2,62% 4,22% 1398506,66 4,73
Sd: 0,00% 0,77% 0,66% 26316,2297 2,1324
T-: -45,3333 -3,0813 -1,6908 -17,7373 -18,3381

SRBCT CLPSO M : 17,99% 5,75% 43,47% 2702994 346,3333
Sd: 5,20% 6,05% 2,93% 1675240,1434 165,2188
T-: - - - - -

PSO(R) M : 0,00% 4,81% 31,05% 15772 10,14
Sd: 0,00% 3,73% 4,06% 2505,4457 2,6561
T-: -153 -6,2195 -52,3143 -13,0332 -17,3227

CLPSO(R) M : 0,00% 6,44% 30,11% 86627,9 13,86
Sd: 0,00% 5,08% 4,80% 11505,6794 6,8266
T-: -153 3,0972 -57,2256 -12,6895 -17,1309

9 Tumors CLPSO M : 55,56% 71,48% 94,74% 874830 149,8889
Sd: 5,77% 10,81% 1,35% 489574,27 116,9406
T-: - - - - -

PSO(R) M : 25,56% 77,67% 93,78% 43110 26,75
Sd: 6,25% 7,40% 1,49% 7192,1514 12,7002
T-: -24,2319 6,5096 -5,0486 -18,2908 -9,439

CLPSO(R) M : 23,45% 74,92% 93,38% 414520,10 27,06
Sd: 4,22% 7,34% 1,82% 74761,4618 13,9282
T-: -25,8871 3,4027 -9,5835 -9,9879 -9,4562

Table E.16: CLPSO based Relief vs random CLPSO and PSO-FS (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors CLPSO M : 23,74% 45,72% 72,57% 326287385,5556 2537,8889

Sd: 2,00% 35,77% 1,47% 179105755,9801 735,6314
T-: - - - - -

PSO(R) M : 17,15% 6,44% 69,78% 10463843,36 491
Sd: 1,19% 1,17% 1,91% 6882215,4065 127,5429
T-: -39,0264 -18,5018 -14,5808 -47,5434 -54,476

CLPSO(R) M : 16,67% 5,47% 70,78% 23737858,92 678,25
Sd: 1,54% 1,10% 1,59% 10805476,9711 187,8824
T-: -46,7952 -18,9621 -12,7511 -45,7721 -52,9894

14 Tumors CLPSO M : 66,75% 63,12% 87,23% 552404446,2 2526,9
Sd: 1,10% 17,04% 1,15% 165292469,6776 463,5459
T-: - - - - -

PSO(R) M : 63,35% 53,19% 86,09% 5568428,11 246,66
Sd: 1,81% 5,27% 0,93% 4446302,803 158,4408
T-: -8,4255 -5,192 -5,2248 -52,2984 -88,0811

CLPSO(R) M : 62,24% 52,10% 86,27% 5710696,96 211,78
Sd: 1,76% 3,51% 0,78% 2395489,664 86,9714
T-: -86,6098 -7,2285 -4,4344 -52,3451 -144,588

Brain Tumor2 CLPSO M : 30,77% 45,22% 54,25% 25252029,0952 938
Sd: 0,00% 3,58% 6,68% 15765058,7788 313,9256
T-: - - - - -

PSO(R) M : 6,84% 47,91% 59,56% 30961,66 6,44
Sd: 2,56% 9,87% 5,29% 2334,1047 2,9202
T-: -252 6,0485 10,7035 -73,3109 -176,1591

CLPSO(R) M : 4,56% 47,67% 57,04% 1260191,77 8,88
Sd: 3,85% 11,23% 4,63% 184846,2031 4,9485
T-: -155,25 3,7947 20,6417 -69,7335 -175,7126

Prostate Tumor CLPSO M : 1,28% 30,82% 32,75% 181622434,1667 2175,5
Sd: 1,89% 16,90% 5,28% 70355673,1626 593,58
T-: - - - - -

PSO(R) M : 2,56% 17,82% 19,56% 32435,33 7,55
Sd: 1,92% 5,91% 4,77% 2194,9423 3,5746
T-: 4,2135 -15,2372 -39,5688 -727,299 -402,2534

CLPSO(R) M : 2,71% 17,44% 21,31% 1472073,37 6,51
Sd: 1,79% 4,88% 6,86% 77578,6907 2,8739
T-: 12,4007 -14,7031 -14,4074 -721,5327 -403,4129

Sonar CLPSO M : 12,24% 27,19% 40,35% 31605,2727 23,5455
Sd: 2,76% 2,43% 2,24% 6516,7455 4,298
T-: - - - - -

PSO(R) M : 12,39% 28,85% 37,97% 18753,55 15,33
Sd: 1,70% 3,79% 2,60% 6358,479 6,1237
T-: 0,9552 2,1486 -12,4528 -8,7739 -7,3315

CLPSO(R) M : 9,55% 26,35% 37,81% 20885,41 17,72
Sd: 2,09% 2,58% 1,70% 4214,0676 3,9087
T-: -20,9464 -6,3798 -23,0093 -8,3731 -7,4935

Table E.17: CLPSO based Relief vs random CLPSO and PSO-FS (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Spam Base CLPSO M : 14,06% 9,71% 15,62% 2003230 38,1

Sd: 1,01% 1,13% 2,01% 450056,7096 4,9766
T-: - - - - -

PSO(R) M : 10,63% 8,81% 14,88% 1362338,77 31,33
Sd: 1,18% 0,26% 0,97% 307982,4086 4,8218
T-: -29,1607 -16,6232 -6,2857 -19,3588 -19,6658

CLPSO(R) M : 9,74% 9,05% 14,83% 1123008,58 27,62
Sd: 0,83% 0,72% 1,01% 276360,7724 4,5858
T-: -34,7951 -7,4198 -8,0067 -26,2295 -28,393

Soybean CLPSO M : 12,76% 7,23% 60,49% 1326505,0909 27,3636
Sd: 1,92% 0,54% 2,31% 145369,2342 2,1106
T-: - - - - -

PSO(R) M : 12,87% 6,78% 58,74% 878965,66 24,22
Sd: 0,97% 0,88% 0,32% 144287,2724 2,9486
T-: 0,5361 -6,2396 -6,6067 -28,2392 -11,3701

CLPSO(R) M : 12,78% 7,00% 58,77% 891868,68 24,13
Sd: 0,73% 0,86% 0,24% 151398,1124 2,5735
T-: 0,1646 -2,9393 -6,5071 -27,4318 -17,0657

Arrhythmia CLPSO M : 33,95% 41,09% 42,72% 1756141,0909 109,3636
Sd: 1,07% 2,30% 0,55% 761999,0311 17,7329
T-: - - - - -

PSO(R) M : 30,78% 41,28% 42,63% 202856,44 24,44
Sd: 2,25% 2,05% 1,59% 54388,1703 7,9861
T-: -25,6557 0,6612 -1,8014 -18,4492 -49,886

CLPSO(R) M : 30,18% 41,88% 42,59% 213292,21 28,28
Sd: 1,82% 1,72% 1,13% 69584,6381 8,4847
T-: -127,9048 2,7692 -2,9726 -18,3685 -59,6686

Secom CLPSO M : 6,41% 9,34% 7,75% 681233,5 35,5
Sd: 0,24% 1,13% 0,16% 366131,4789 14,5239
T-: - - - - -

PSO(R) M : 6,82% 6,61% 10,11% 54114,71 2,28
Sd: 0,14% 0,01% 2,07% 15041,5406 1,2536
T-: 12,8042 -93,8449 8,0118 -36,0378 -33,8556

CLPSO(R) M : 6,56% 6,71% 8,73% 99209,81 5,88
Sd: 0,30% 0,15% 0,92% 27196,7619 2,9264
T-: 4,7972 -90,0489 66,0185 -33,5695 -30,0366

semeion CLPSO M : 14,76% 9,15% 81,17% 9704920,1818 158,2727
Sd: 1,49% 0,27% 0,16% 1828334,9384 6,4667
T-: - - - - -

PSO(R) M : 15,04% 9,04% 81,22% 8725772,66 161,77
Sd: 0,96% 0,91% 0,15% 2227476,7364 22,3985
T-: 2,9028 -3,0197 2,3641 -6,4442 3,3538

CLPSO(R) M : 13,88% 9,17% 81,11% 7770737,82 154,58
Sd: 0,75% 0,53% 0,17% 1358144,7059 10,37
T-: -20,2347 0,8489 -3,643 -17,2727 -3,9319

Lymphoma CLPSO M : 6,47% 1,58% 17,45% 7289321,2 454,8
Sd: 4,34% 1,72% 2,25% 3538625,7463 78,2387
T-: 0- - - - -

PSO(R) M : 0,00% 13,80% 17,20% 13130,92 2,53
Sd: 0,00% 6,53% 6,81% 1177,8929 1,3914
T-: -12,2222 51,79 -0,9484 -33,2141 -1602,3901

CLPSO(R) M : 0,00% 11,43% 17,66% 224054,58 3,48
Sd: 0,00% 6,80% 5,51% 5009,3233 2,2139
T-: -12,2222 58,4754 0,725 -32,2513 -1539,5655

Table E.18: CLPSO based Relief vs random CLPSO and PSO-FS (4)



259

Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast CLPSO M : 14,80% 40,79% 50,21% 14989102,5 258,7

Sd: 6,27% 8,29% 3,43% 15819583,1527 248,8641
T-: - - - - -

EPSOFS(X2) M : 3,64% 42,34% 44,57% 6628826,73 18,62
Sd: 2,81% 5,90% 6,43% 1130932,801 14,3088
T-: -37,655 1,5745 -40,3869 -7,8288 -13,0675

EPSO-FS(R) M : 5,70% 44,24% 45,37% 6966383,54 8,57
Sd: 2,65% 4,78% 5,38% 1086915,3481 3,9924
T-: -31,5457 3,585 -37,3314 -7,5113 -13,6155

EPSO-FS(SU) M : 5,45% 43,66% 48,11% 6523488,90 8,77
Sd: 2,32% 5,08% 7,07% 974605,1308 5,5027
T-: -32,4833 2,8927 -12,9833 -7,9275 -13,6052

CNS CLPSO M : 14,00% 42,67% 39,27% 594637,2 34,6
Sd: 5,84% 3,96% 5,30% 357285,9256 10,8853
T-: - - - - -

EPSOFS(X2) M : 2,78% 48,92% 35,86% 569435,52 10,75
Sd: 3,32% 7,34% 6,00% 148728,5232 4,5265
T-: -15,2556 10,2581 -42,8431 -10,9086 -66,1877

EPSO-FS(R) M : 1,62% 40,26% 43,25% 622270,06 7,84
Sd: 2,90% 7,29% 6,22% 54263,7199 3,3552
T-: -16,5309 -3,9594 15,8843 10,5845 -74,121

EPSO-FS(SU) M : 6,11% 43,83% 39,89% 626050,95 10,08
Sd: 5,53% 7,11% 7,13% 41364,6168 4,7996
T-: -9,9522 1,9433 5,4332 11,7969 -68,0987

Colon CLPSO M : 9,66% 24,34% 31,55% 98361,7273 20,0909
Sd: 3,26% 4,79% 4,25% 47964,3065 3,5058
T-: - - - - -

EPSOFS(X2) M : 1,11% 23,40% 23,94% 54274,86 11,75
Sd: 2,42% 5,33% 7,31% 11215,3871 6,1465
T-: -27,4944 -1,4217 -39,1617 -33,8839 -80,9595

EPSO-FS(R) M : 3,57% 19,32% 23,98% 62126,51 14,91
Sd: 4,09% 4,66% 4,23% 3412,6605 5,1983
T-: -19,07 -7,585 -37,4967 -27,8814 -34,632

EPSO-FS(SU) M : 1,30% 22,39% 26,75% 63126,29 20,33
Sd: 2,59% 5,00% 3,39% 5767,6176 7,4464
T-: -26,5614 -2,9332 -26,4308 -27,1004 1,4205

Leukemia3C CLPSO M : 16,11% 28,17% 40,44% 6904625,6 311,2
Sd: 1,76% 11,08% 8,46% 9670346,2715 303,2439
T-: 0- - - - -

EPSOFS(X2) M : 0,00% 1,01% 15,40% 724600,39 55,60
Sd: 0,00% 2,31% 4,86% 65116,357 35,4398
T-: -32,2222 -17,0276 -64,3678 -99,0895 -25,34

EPSO-FS(R) M : 0,00% 6,40% 10,59% 669026,93 10,36
Sd: 0,00% 6,53% 5,32% 50593,7262 4,4639
T-: -32,2222 -13,5849 -77,0924 -99,7463 -29,8423

EPSO-FS(SU) M : 0,00% 7,07% 12,07% 679008,04 16,40
Sd: 0,00% 7,10% 3,56% 21224,5251 8,5449
T-: -32,2222 -13,025 -68,4997 -99,8387 -29,2329

Table E.19: CLPSO-FS: filter comparison (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Leukemia4C CLPSO M : 17,78% 23,89% 35,44% 39871876,9 935,5

Sd: 2,34% 3,76% 4,47% 21888598,925 235,0316
T-: - - - - -

EPSOFS(X2) M : 5,56% 11,93% 19,60% 815816,91 94,73
Sd: 0,00% 3,11% 1,98% 84481,1971 23,5397
T-: -110 -214,325 -101,3925 -58,8203 -111,354

EPSO-FS(R) M : 5,56% 17,22% 23,99% 703333,02 19,85
Sd: 0,00% 5,50% 4,15% 14850,1825 8,8013
T-: -110 -67,4772 -68,3489 -58,9898 -121,1695

EPSO-FS(SU) M : 5,56% 21,24% 21,57% 658471,13 25,68
Sd: 0,00% 6,72% 5,27% 72146,103 12,6581
T-: -110 -33,5397 -55,2175 -59,0573 -120,4083

Lung CLPSO M : 10,78% 8,55% 22,87% 262280152,6 1617,4
Sd: 1,91% 0,67% 1,89% 119376285,4008 367,9068
T-: - - - - -

EPSOFS(X2) M : 5,75% 8,43% 19,96% 6668015,95 256,56
Sd: 0,50% 2,36% 1,86% 4613655,1388 204,39
T-: -51,339 -1,4431 -11,7113 -40,4777 -55,4047

EPSO-FS(R) M : 7,14% 10,85% 23,18% 2947791,46 126,53
Sd: 2,15% 4,00% 1,51% 1650031,1773 105,5443
T-: -26,669 29,4946 1,1902 -41,0666 -60,508

EPSO-FS(SU) M : 4,96% 9,04% 23,23% 24327274,11 452,76
Sd: 1,01% 4,46% 1,80% 35803172,709 494,1124
T-: -50,43 0,6854 1,3282 -36,8833 -32,8044

MLL CLPSO M : 11,11% 20,89% 23,11% 110196512,3 1817,1
Sd: 0,00% 15,21% 5,13% 63219803,2856 657,5251
T-: - - - - -

EPSOFS(X2) M : 0,00% 14,18% 11,80% 1954399,34 10,34
Sd: 0,00% 4,35% 5,20% 66545,9714 4,8016
T-: - -7,7212 -74,0138 -642,0846 -48,5558

EPSO-FS(R) M : 0,00% 14,50% 18,43% 2096728,14 10,75
Sd: 0,00% 6,71% 6,05% 57640,0522 4,758
T-: - -7,0107 -19,2878 -641,2373 -48,5439

EPSO-FS(SU) M : 0,00% 14,66% 23,02% 2244662,38 58,44
Sd: 0,00% 6,17% 4,39% 109637,0996 44,4075
T-: - -7,0578 -0,2632 -639,8892 -47,1393

Ovarian CLPSO M : 6,64% 11,83% 4,54% 356989523,125 2078,375
Sd: 0,72% 13,13% 1,89% 117505367,7324 468,4003
T-: - - - - -

EPSOFS(X2) M : 0,00% 2,97% 4,40% 3070593,82 3,93
Sd: 0,00% 1,48% 0,94% 525183,1468 1,5433
T-: -45,3333 -2,9654 -0,7777 -17,6539 -18,3452

EPSO-FS(R) M : 0,00% 2,62% 4,22% 1398506,66 4,73
Sd: 0,00% 0,77% 0,66% 26316,2297 2,1324
T-: -45,3333 -3,0813 -1,6908 -17,7373 -18,3381

EPSO-FS(SU) M : 0,00% 2,80% 4,54% 1369084,58 4,52
Sd: 0,00% 0,40% 1,04% 22981,9931 2,3216
T-: -45,3333 -3,0221 -0,0305 -17,7388 -18,3399

Table E.20: CLPSO-FS: filter comparison (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
SRBCT CLPSO M : 17,99% 5,75% 43,47% 2702994 346,3333

Sd: 5,20% 6,05% 2,93% 1675240,1434 165,2188
T-: - - - - -

EPSOFS(X2) M : 0,00% 2,08% 31,65% 180284,80 67,31
Sd: 0,00% 1,75% 3,24% 161670,1203 24,9897
T-: -153 -24,1984 -47,1112 -12,2353 -14,3762

EPSO-FS(R) M : 0,00% 6,44% 30,11% 86627,9 13,86
Sd: 0,00% 5,08% 4,80% 11505,6794 6,8266
T-: -153 3,0972 -57,2256 -12,6895 -17,1309

EPSO-FS(SU) M : 0,00% 4,79% 33,08% 120370,12 37,56
Sd: 0,00% 4,82% 6,47% 82681,815 36,2031
T-: -153 -4,5602 -44,6688 -12,5258 -15,909

9 Tumors CLPSO M : 55,56% 71,48% 94,74% 874830 149,8889
Sd: 5,77% 10,81% 1,35% 489574,27 116,9406
T-: - - - - -

EPSOFS(X2) M : 26,80% 66,38% 94,26% 463140,65 52
Sd: 3,72% 4,48% 1,69% 97428,8365 11,4546
T-: -23,2897 -5,3874 -3,4405 -9,0541 -7,5359

EPSO-FS(R) M : 23,45% 74,92% 93,38% 414520,10 27,06
Sd: 4,22% 7,34% 1,82% 74761,4618 13,9282
T-: -25,8871 3,4027 -9,5835 -9,9879 -9,4562

EPSO-FS(SU) M : 30,53% 69,82% 94,28% 476369,36 50
Sd: 4,05% 5,92% 2,18% 51782,9044 18,3242
T-: -20,0047 -1,6984 -3,2697 -8,7633 -7,688

11 Tumors CLPSO M : 23,74% 45,72% 72,57% 326287385,5556 2537,8889
Sd: 2,00% 35,77% 1,47% 179105755,9801 735,6314
T-: - - - - -

EPSOFS(X2) M : 12,71% 9,18% 71,25% 3590808,84 209,86
Sd: 2,10% 2,61% 1,43% 1716002,0386 94,2897
T-: -76,83 -17,2107 -11,8087 -48,8202 -66,4889

EPSO-FS(R) M : 16,67% 5,47% 70,78% 23737858,92 678,25
Sd: 1,54% 1,10% 1,59% 10805476,9711 187,8824
T-: -46,7952 -18,9621 -12,7511 -45,7721 -52,9894

EPSO-FS(SU) M : 18,06% 8,01% 71,67% 29800745 748,44
Sd: 2,40% 4,90% 1,86% 11605883,9798 241,8688
T-: -40,4495 -17,7607 -6,9181 -44,554 -49,5458

14 Tumors CLPSO M : 66,75% 63,12% 87,23% 552404446,2 2526,9
Sd: 1,10% 17,04% 1,15% 165292469,6776 463,5459
T-: - - - - -

EPSOFS(X2) M : 55,02% 63,24% 85,21% 2826602,47 70
Sd: 1,98% 4,29% 0,89% 571025,0777 31,3146
T-: -212,4484 0,0835 -9,3301 -52,6235 -161,7265

EPSO-FS(R) M : 62,24% 52,10% 86,27% 5710696,96 211,78
Sd: 1,76% 3,51% 0,78% 2395489,664 86,9714
T-: -86,6098 -7,2285 -4,4344 -52,3451 -144,588

EPSO-FS(SU) M : 60,82% 54,10% 86,16% 3911628,94 141,16
Sd: 2,00% 3,34% 0,84% 872627,1664 36,7011
T-: -59,9583 -5,902 -4,9113 -52,5189 -154,2766

Table E.21: CLPSO-FS: filter comparison (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Brain Tumor2 CLPSO M : 30,77% 45,22% 54,25% 25252029,0952 938

Sd: 0,00% 3,58% 6,68% 15765058,7788 313,9256
T-: - - - - -

EPSOFS(X2) M : 6,09% 46,67% 57,03% 1197634,77 5,02
Sd: 4,19% 13,39% 5,41% 168267,6695 1,5227
T-: -739,2 8,3428 43,536 -69,9194 -176,5083

EPSO-FS(R) M : 4,56% 47,67% 57,04% 1260191,77 8,88
Sd: 3,85% 11,23% 4,63% 184846,2031 4,9485
T-: -155,25 3,7947 20,6417 -69,7335 -175,7126

EPSO-FS(SU) M : 3,37% 52,50% 58,15% 1272232 11,62
Sd: 3,94% 9,35% 4,51% 208896,0895 4,3493
T-: -130,2857 57,841 8,0214 -69,6755 -175,0994

Prostate Tumor CLPSO M : 1,28% 30,82% 32,75% 181622434,1667 2175,5
Sd: 1,89% 16,90% 5,28% 70355673,1626 593,58
T-: - - - - -

EPSOFS(X2) M : 0,96% 19,65% 22,15% 1354122,22 6,34
Sd: 1,68% 7,70% 7,23% 114596,1402 2,736
T-: -2,9391 -13,4212 -48,6207 -721,9745 -403,5242

EPSO-FS(R) M : 2,71% 17,44% 21,31% 1472073,37 6,51
Sd: 1,79% 4,88% 6,86% 77578,6907 2,8739
T-: 12,4007 -14,7031 -14,4074 -721,5327 -403,4129

EPSO-FS(SU) M : 0,00% 11,45% 23,75% 1646577,81 92,25
Sd: 0,00% 2,71% 4,37% 348646,3169 71,9949
T-: -12 -23,1453 -39,3629 -707,4502 -204,1891

Sonar CLPSO M : 12,24% 27,19% 40,35% 31605,2727 23,5455
Sd: 2,76% 2,43% 2,24% 6516,7455 4,298
T-: - - - - -

EPSOFS(X2) M : 12,37% 28,80% 38,83% 14856,78 11,80
Sd: 1,65% 2,70% 1,75% 3284,5232 2,1768
T-: 0,9073 20,9004 -25,5272 -13,0834 -15,2467

EPSO-FS(R) M : 9,55% 26,35% 37,81% 20885,41 17,72
Sd: 2,09% 2,58% 1,70% 4214,0676 3,9087
T-: -20,9464 -6,3798 -23,0093 -8,3731 -7,4935

EPSO-FS(SU) M : 11,97% 28,13% 38,91% 16108,33 13,27
Sd: 2,04% 2,58% 2,11% 3661,0476 2,3962
T-: -1,2355 5,2451 -24,6444 -11,9608 -13,1816

Spam Base CLPSO M : 14,06% 9,71% 15,62% 2003230 38,1
Sd: 1,01% 1,13% 2,01% 450056,7096 4,9766
T-: - - - - -

EPSOFS(X2) M : 10,26% 10,76% 14,38% 383114,19 11,23
Sd: 0,62% 1,20% 1,98% 129138,1385 3,5288
T-: -32,209 20,3082 -12,7292 -53,3566 -92,4734

EPSO-FS(R) M : 9,74% 9,05% 14,83% 1123008,58 27,62
Sd: 0,83% 0,72% 1,01% 276360,7724 4,5858
T-: -34,7951 -7,4198 -8,0067 -26,2295 -28,393

EPSO-FS(SU) M : 9,83% 9,55% 13,75% 513861,77 13,94
Sd: 0,94% 0,76% 1,98% 145717,9986 3,7803
T-: -36,0939 -2,9991 -9,4577 -47,8746 -72,5492

Table E.22: CLPSO-FS: filter comparison (4)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Soybean CLPSO M : 12,76% 7,23% 60,49% 1326505,0909 27,3636

Sd: 1,92% 0,54% 2,31% 145369,2342 2,1106
T-: - - - - -

EPSOFS(X2) M : 11,82% 5,70% 58,94% 860082,72 19,36
Sd: 1,24% 0,57% 0,30% 214200,5806 2,1308
T-: -6,253 -21,462 -5,8614 -29,1557 -59,8214

EPSO-FS(R) M : 12,78% 7,00% 58,77% 891868,68 24,13
Sd: 0,73% 0,86% 0,24% 151398,1124 2,5735
T-: 0,1646 -2,9393 -6,5071 -27,4318 -17,0657

EPSO-FS(SU) M : 12,93% 6,30% 58,98% 887488,5 21,11
Sd: 0,44% 0,48% 1,09% 120433,3917 2,1113
T-: 1,1227 -12,9032 -5,7104 -21,0433 -24,0603

Arrhytmia CLPSO M : 33,95% 41,09% 42,72% 1756141,0909 109,3636
Sd: 1,07% 2,30% 0,55% 761999,0311 17,7329
T-: - - - - -

EPSOFS(X2) M : 28,90% 37,17% 42,86% 319936,81 34,45
Sd: 0,85% 1,68% 0,78% 95337,2984 5,151
T-: -168,0096 -14,6188 3,9273 -17,1025 -56,0473

EPSO-FS(R) M : 30,18% 41,88% 42,59% 213292,21 28,28
Sd: 1,82% 1,72% 1,13% 69584,6381 8,4847
T-: -127,9048 2,7692 -2,9726 -18,3685 -59,6686

EPSO-FS(SU) M : 26,55% 36,78% 42,84% 182711 23,88
Sd: 1,46% 1,95% 0,88% 48903,0314 6,8246
T-: -252,9999 -16,0584 3,9012 -18,7317 -62,2445

Secom CLPSO M : 6,41% 9,34% 7,75% 681233,5 35,5
Sd: 0,24% 1,13% 0,16% 366131,4789 14,5239
T-: - - - - -

EPSOFS(X2) M : 6,25% 6,73% 10,08% 62414,43 3,52
Sd: 0,26% 0,09% 1,22% 8436,1375 0,8488
T-: -5,4257 -89,8007 75,8461 -35,9929 -33,6581

EPSO-FS(R) M : 6,56% 6,71% 8,73% 99209,81 5,88
Sd: 0,30% 0,15% 0,92% 27196,7619 2,9264
T-: 4,7972 -90,0489 66,0185 -33,5695 -30,0366

EPSO-FS(SU) M : 6,06% 6,78% 10,71% 75904,55 4,77
Sd: 0,32% 0,11% 0,85% 9476,9187 1,166
T-: -9,6912 -85,9831 124,3101 -35,2093 -32,3365

semeion CLPSO M : 14,76% 9,15% 81,17% 9704920,1818 158,2727
Sd: 1,49% 0,27% 0,16% 1828334,9384 6,4667
T-: - - - - -

EPSOFS(X2) M : 13,52% 9,07% 81,17% 7413861,91 151,04
Sd: 0,94% 0,61% 0,18% 1172657,8542 8,9193
T-: -28,2096 -2,5261 0,0056 -19,9386 -7,707

EPSO-FS(R) M : 13,88% 9,17% 81,11% 7770737,82 154,58
Sd: 0,75% 0,53% 0,17% 1358144,7059 10,37
T-: -20,2347 0,8489 -3,643 -17,2727 -3,9319

EPSO-FS(SU) M : 13,37% 9,21% 81,16% 6984514,77 149,27
Sd: 0,92% 0,48% 0,18% 914462,7034 8,6691
T-: -20,8352 1,5122 -0,784 -24,1223 -9,2728

Lymphoma CLPSO M : 6,47% 1,58% 17,45% 7289321,2 454,8
Sd: 4,34% 1,72% 2,25% 3538625,7463 78,2387
T-: - - - - -

EPSOFS(X2) M : 0,00% 7,51% 12,83% 227372,60 15,32
Sd: 0,00% 5,19% 5,20% 20685,1587 9,7981
T-: -12,2222 31,774 -14,4047 -32,2362 -1487,8666

EPSO-FS(R) M : 0,00% 11,43% 17,66% 224054,58 3,48
Sd: 0,00% 6,80% 5,51% 5009,3233 2,2139
T-: -12,2222 58,4754 0,725 -32,2513 -1539,5655

EPSO-FS(SU) M : 0,00% 15,62% 18,52% 224784,5 3,22
Sd: 0,00% 4,80% 5,66% 3034,4406 1,896
T-: -12,2222 80,5281 3,158 -32,248 -1593,91

Table E.23: CLPSO-FS: filter comparison (5)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Breast CLPSO(R) M : 5,70% 44,24% 45,37% 6966383,5455 8,5758

Sd: 2,65% 4,78% 5,38% 1086915,3481 3,9924
T-: - - - - -

PSO-FS 2 M : 5,90% 43,93% 47,62% 185937,05 6,27
Sd: 2,39% 5,08% 4,76% 54593,0167 3,2737
T-: 2,3248 -1,4696 27,4643 -308,4938 -17,0064

EPSO-FS2 M : 4,77% 41,71% 47,39% 13109555,69 7,57
Sd: 2,53% 5,45% 5,12% 3774419,5844 3,0617
T-: -12,2391 -53,3626 6,8654 26,0292 -6,8975

CNS CLPSO(R) M : 14,00% 42,67% 39,27% 594637,2 34,6
Sd: 5,84% 3,96% 5,30% 357285,9256 10,8853
T-: - - - - -

PSO-FS 2 M : 4,81% 44,59% 38,19% 45227,41 7,30
Sd: 3,36% 6,87% 6,58% 14591,6518 3,6354
T-: -12,3939 3,1546 -4,9445 -241,4646 -73,0577

EPSO-FS2 M : 2,05% 46,85% 38,21% 1171319,88 8,92
Sd: 3,14% 7,59% 6,06% 308822,593 4,0785
T-: -16,2002 6,9654 -7,5338 88,5421 -65,7805

Colon CLPSO(R) M : 9,66% 24,34% 31,55% 98361,7273 20,0909
Sd: 3,26% 4,79% 4,25% 47964,3065 3,5058
T-: - - - - -

PSO-FS 2 M : 3,78% 21,85% 25,43% 19526,95 13,41
Sd: 3,89% 6,69% 6,78% 6988,6066 6,9906
T-: -18,6549 -3,7732 -33,0296 -60,545 -66,9573

EPSO-FS2 M : 2,50% 22,48% 28,90% 116675,52 11,52
Sd: 4,03% 6,48% 5,75% 38090,1747 5,0918
T-: -20,7926 -2,3964 -5,941 14,0047 -84,8479

Leukemia3C CLPSO(R) M : 16,11% 28,17% 40,44% 6904625,6 311,2
Sd: 1,76% 11,08% 8,46% 9670346,2715 303,2439
T-: - - - - -

PSO-FS 2 M : 0,00% 5,73% 13,23% 59425,78 14,47
Sd: 0,00% 6,67% 6,08% 35213,4072 12,4572
T-: -32,2222 -14,0725 -65,7358 -109,7752 -29,4344

EPSO-FS2 M : 0,00% 5,43% 14,77% 1496311,95 18,22
Sd: 0,00% 4,56% 5,11% 395832,9724 9,5963
T-: -32,2222 -14,2198 -63,9055 -85,8225 -29,0595

Leukemia4C CLPSO(R) M : 17,78% 23,89% 35,44% 39871876,9 935,5
Sd: 2,34% 3,76% 4,47% 21888598,925 235,0316
T-: - - - - -

PSO-FS 2 M : 5,56% 17,76% 23,14% 58339,39 17,5
Sd: 0,00% 6,37% 5,41% 20214,3319 11,3727
T-: -110 -25,5185 -50,8836 -59,9612 -121,5848

EPSO-FS2 M : 5,56% 16,44% 21,26% 1462794,40 25,72
Sd: 0,00% 6,19% 4,82% 203925,3168 17,7071
T-: -110 -30,5292 -74,9121 -57,8458 -117,1067

Table E.24: CLPSO: multi-filters assessement (1)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Lung CLPSO(R) M : 10,78% 8,55% 22,87% 262280152,6 1617,4

Sd: 1,91% 0,67% 1,89% 119376285,4008 367,9068
T-: - - - - -

PSO-FS 2 M : 5,83% 8,79% 20,74% 3277129,83 178,51
Sd: 0,32% 3,32% 1,71% 3779166,1201 126,0449
T-: -50,5351 2,3275 -8,5794 -41,0104 -58,012

EPSO-FS2 M : 5,32% 9,84% 21,41% 7364130,85 163,19
Sd: 0,91% 3,22% 1,99% 4928803,359 157,6355
T-: -46,0658 6,5544 -5,7759 -40,3547 -58,1286

MLL CLPSO(R) M : 11,11% 20,89% 23,11% 110196512,3 1817,1
Sd: 0,00% 15,21% 5,13% 63219803,2856 657,5251
T-: - - - - -

PSO-FS 2 M : 0,00% 14,72% 14,87% 99694,33 7,30
Sd: 0,00% 5,36% 7,02% 68273,9982 3,7252
T-: - -7,0806 -49,554 -653,0878 -48,6372

EPSO-FS2 M : 0,00% 17,64% 15,33% 4050809 8,8
Sd: 0,00% 5,64% 6,80% 995981,8346 4,7784
T-: - -3,7429 -53,6182 -628,9388 -48,5969

Ovarian CLPSO(R) M : 6,64% 11,83% 4,54% 356989523,125 2078,375
Sd: 0,72% 13,13% 1,89% 117505367,7324 468,4003
T-: - - - - -

PSO-FS 2 M : 0,00% 3,05% 4,37% 172204,92 3,46
Sd: 0,00% 1,32% 1,08% 113087,782 0,9772
T-: -45,3333 -2,9384 -0,9042 -17,7985 -18,3494

EPSO-FS2 M : 0,00% 2,48% 4,31% 4986064,82 4,43
Sd: 0,00% 0,83% 0,75% 2067667,7646 2,6939
T-: -45,3333 -3,1304 -1,2422 -17,5582 -18,3407

SRBCT CLPSO(R) M : 17,99% 5,75% 43,47% 2702994 346,3333
Sd: 5,20% 6,05% 2,93% 1675240,1434 165,2188
T-: - - - - -

PSO-FS 2 M : 0,00% 5,39% 31,18% 29495,14 14,12
Sd: 0,00% 3,54% 4,74% 8994,8415 7,5802
T-: -153 -1,9213 -50,7726 -12,9666 -17,1164

EPSO-FS2 M : 0,00% 3,59% 31,91% 221740,09 28,63
Sd: 0,00% 3,80% 4,13% 183338,0398 20,3997
T-: -153 -9,6952 -51,3855 -12,0342 -16,3679

9 Tumors CLPSO(R) M : 55,56% 71,48% 94,74% 874830 149,8889
Sd: 5,77% 10,81% 1,35% 489574,27 116,9406
T-: - - - - -

PSO-FS 2 M : 27,48% 73,07% 94,00% 89345,97 31,97
Sd: 4,27% 7,43% 2,02% 25118,2624 14,2364
T-: -22,5909 1,6544 -5,2587 -17,2751 -9,0785

EPSO-FS2 M : 26,67% 71,06% 94,47% 1134513,79 33,54
Sd: 4,82% 7,72% 1,95% 523201,2959 15,3962
T-: -22,8293 -0,45 -1,859 5,7087 -8,9041

Table E.25: CLPSO: multi-filters assessement (2)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
11 Tumors CLPSO(R) M : 23,74% 45,72% 72,57% 326287385,5556 2537,8889

Sd: 2,00% 35,77% 1,47% 179105755,9801 735,6314
T-: - - - - -

PSO-FS 2 M : 15,45% 8,45% 71,77% 5459088,55 271,77
Sd: 2,20% 3,20% 2,09% 5178874,5277 134,7704
T-: -58,8473 -17,5536 -5,7951 -48,537 -64,7175

EPSO-FS2 M : 14,05% 7,19% 72,05% 13122508,77 373,63
Sd: 2,49% 1,67% 2,54% 7933093,8697 144,6232
T-: -59,149 -18,1486 -4,5721 -47,3622 -61,8091

14 Tumors CLPSO(R) M : 66,75% 63,12% 87,23% 552404446,2 2526,9
Sd: 1,10% 17,04% 1,15% 165292469,6776 463,5459
T-: - - - - -

PSO-FS 2 M : 58,96% 62,38% 85,69% 1727936,35 74,92
Sd: 2,03% 6,66% 1,04% 1237781,8377 52,115
T-: -145,5213 -0,4872 -7,0921 -52,7287 -161,1389

EPSO-FS2 M : 57,14% 59,17% 85,66% 6003182,16 84,5
Sd: 2,51% 5,09% 0,95% 2256850,5579 40,5688
T-: -80,0553 -2,5979 -7,1596 -52,316 -160,7717

Brain Tumor2 CLPSO(R) M : 30,77% 45,22% 54,25% 25252029,0952 938
Sd: 0,00% 3,58% 6,68% 15765058,7788 313,9256
T-: - - - - -

PSO-FS 2 M : 9,57% 48,55% 57,46% 72471,34 4,85
Sd: 5,65% 13,25% 6,31% 22716,5443 2,4654
T-: -149,4516 5,2163 66,7848 -73,1902 -176,5398

EPSO-FS2 M : 5,02% 44,70% 56,94% 2345996,91 4,69
Sd: 4,41% 13,72% 5,81% 584160,9526 2,0546
T-: -221,375 -0,5016 10,6126 -66,5521 -176,5705

Prostate Tumor CLPSO(R) M : 1,28% 30,82% 32,75% 181622434,1667 2175,5
Sd: 1,89% 16,90% 5,28% 70355673,1626 593,58
T-: - - - - -

PSO-FS 2 M : 1,25% 18,43% 22,39% 77045,60 6,02
Sd: 1,82% 5,26% 6,62% 23842,5382 3,1281
T-: -0,2692 -14,8792 -29,3406 -727,1205 -403,5891

EPSO-FS2 M : 1,75% 17,13% 20,25% 2521959,63 6,45
Sd: 1,96% 4,03% 6,31% 827152,3457 3,0194
T-: 3,5013 -15,8998 -42,0877 -717,0533 -403,539

Sonar CLPSO(R) M : 12,24% 27,19% 40,35% 31605,2727 23,5455
Sd: 2,76% 2,43% 2,24% 6516,7455 4,298
T-: - - - - -

PSO-FS 2 M : 12,11% 27,67% 39,30% 32962,75 14,93
Sd: 1,93% 3,19% 1,95% 13987,2921 4,337
T-: -1,1359 6,177 -10,2563 1,0507 -11,1887

EPSO-FS2 M : 11,45% 28,06% 38,71% 29799,36 13,09
Sd: 2,10% 3,13% 2,57% 10395,1351 3,1306
T-: -3,7358 6,0333 -10,2131 -1,4078 -13,0246

Table E.26: CLPSO: multi-filters assessement (3)
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Data construction stage Measure Fitness Validation1 Validation2 CPU (ms) # Attrib.
Spam Base CLPSO(R) M : 14,06% 9,71% 15,62% 2003230 38,1

Sd: 1,01% 1,13% 2,01% 450056,7096 4,9766
T-: - - - - -

PSO-FS 2 M : 10,58% 10,04% 14,14% 907429,20 15,05
Sd: 0,77% 1,39% 2,00% 429717,5333 7,3804
T-: -28,8566 5,7659 -13,7928 -34,4666 -79,2002

EPSO-FS2 M : 9,53% 9,54% 13,68% 1416780,73 18,08
Sd: 0,70% 0,71% 1,20% 630673,4262 5,6882
T-: -36,1952 -2,4729 -19,7909 -15,5243 -47,2971

Soybean CLPSO(R) M : 12,76% 7,23% 60,49% 1326505,0909 27,3636
Sd: 1,92% 0,54% 2,31% 145369,2342 2,1106
T-: - - - - -

PSO-FS 2 M : 13,06% 6,20% 58,91% 1526667,09 20,71
Sd: 0,83% 0,74% 0,76% 470670,6078 3,218
T-: 1,9955 -14,6107 -5,9657 11,7062 -43,6658

EPSO-FS2 M : 12,63% 6,25% 58,79% 1654804,5 21,77
Sd: 0,76% 0,55% 0,23% 333589,0991 2,5622
T-: -0,8848 -13,8041 -6,4145 16,2701 -44,9442

Arrhythmia CLPSO(R) M : 33,95% 41,09% 42,72% 1756141,0909 109,3636
Sd: 1,07% 2,30% 0,55% 761999,0311 17,7329
T-: - - - - -

PSO-FS 2 M : 28,14% 37,89% 43,18% 354455,17 26,77
Sd: 1,64% 2,36% 1,25% 113644,6349 9,1329
T-: -117,5489 -11,9218 9,3242 -16,6906 -60,8355

EPSO-FS2 M : 26,74% 37,75% 42,83% 364101,39 26,91
Sd: 1,19% 2,54% 0,92% 110878,833 7,5553
T-: -96,6794 -12,043 2,3814 -16,5755 -61,9657

Secom CLPSO(R) M : 6,41% 9,34% 7,75% 681233,5 35,5
Sd: 0,24% 1,13% 0,16% 366131,4789 14,5239
T-: - - - - -

PSO-FS 2 M : 6,36% 6,84% 9,67% 138875,61 4,76
Sd: 0,28% 0,23% 1,55% 57824,3409 2,9061
T-: -1,6572 -85,9674 78,8573 -31,3938 -32,3476

EPSO-FS2 M : 6,21% 6,71% 10,11% 130686,47 3,69
Sd: 0,35% 0,06% 1,43% 39824,3147 1,0196
T-: -6,6724 -90,4542 94,7166 -32,0233 -33,475

semeion CLPSO(R) M : 14,76% 9,15% 81,17% 9704920,1818 158,2727
Sd: 1,49% 0,27% 0,16% 1828334,9384 6,4667
T-: - - - - -

PSO-FS 2 M : 14,45% 8,95% 81,13% 16115367,55 160,07
Sd: 0,95% 0,79% 0,18% 5351789,3788 18,4007
T-: -7,2709 -5,6025 -2,2559 35,2408 1,8238

EPSO-FS2 M : 13,44% 9,14% 81,23% 15351833,6522 153,13
Sd: 0,58% 0,55% 0,16% 4786029,9937 10,1323
T-: -30,3947 -0,2555 2,874 40,7089 -4,8889

Lymphoma CLPSO(R) M : 6,47% 1,58% 17,45% 7289321,2 454,8
Sd: 4,34% 1,72% 2,25% 3538625,7463 78,2387
T-: - - - - -

PSO-FS 2 M : 0,00% 12,51% 14,04% 27030,34 3,56
Sd: 0,00% 5,78% 5,34% 7993,7106 1,8848
T-: -12,2222 43,2493 -13,0834 -33,1507 -1596,8734

EPSO-FS2 M : 0,00% 10,04% 14,84% 437518,43 7,43
Sd: 0,00% 6,83% 4,99% 119953,4412 6,4443
T-: -12,2222 23,2788 -5,1937 -31,2769 -1130,2255

Table E.27: CLPSO: multi-filters assessement (4)
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[35] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada. Normalized mu-

tual information feature selection. IEEE Transactions on Neural Networks,

20(2):189–201, 2009.

[36] T. A. Feo and M. G. C. Resende. A probabilistic heuristic for a computationally

difficult set covering problem. Operations Research Letters, 8(2):67 – 71, 1989.



BIBLIOGRAPHY 272

[37] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6:109–133, 1995.

[38] P. Festa and M. Resende. GRASP: basic components and enhancements.

Telecommunication Systems, 46:253–271, 2011.

[39] P. Festa and M. G. C. Resende. An annotated bibliography of grasp part i:

Algorithms. International Transactions in Operational Research, 16(1):1–24,

2009.

[40] H. A. Firpi and E. Goodman. Swarmed feature selection. InAIPR ’04: Proceed-

ings of the 33rd Applied Imagery Pattern Recognition Workshop, pages 112–118,

Washington, DC, USA, 2004. IEEE Computer Society.

[41] A. A. Freitas. Data Mining and Knowledge Discovery with Evolutionary Algo-

rithms. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2002.
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