Propriétés arithmétiques et statistiques des fonctions digitales restreintes

par Zaid Esmat Shawket

Thèse de doctorat en Mathématiques

Sous la direction de Christian Mauduit.

Le président du jury était Frédérique Bassino.

Le jury était composé de Christian Mauduit, Frédérique Bassino, Mohamed Mkaouar, Jean-Louis Maltret, Badih Ghattas, Marie-Renée Fleury.

Les rapporteurs étaient Mohamed Mkaouar.


  • Résumé

    Dans ce travail nous étudions les propriétés arithmétiques et statistiques d'une nouvelle classe de fonctions de comptage des chiffres appelées fonctions digitales restreintes. Nous présentons tout d'abord les principales propriétés des suites engendrées par une substitution ou un $q$-automate ainsi que la suite célèbre de Thue-Morse et ses généralisations, puis nous comparons ces notions avec celle de fonction digitale restreinte.Nous étudions ensuite les sommes d'exponentielles associées à ces fonctions digitales restreintes ainsi que leur application d'une part à l'étude de la répartition modulo 1 des fonctions digitales restreintes et d'autre part à l'étude des propriétés statistiques des suites arithmétiques définies par des fonctions digitales restreintes.Dans la dernière partie de ce travail on étudie la représentation géométrique de ces sommes d'exponentielle à la lumière des travaux antérieurs de Dekking et Mendès-France ce qui nous conduit à énoncer plusieurs problèmes ouverts.


  • Résumé

    In this work we study the arithmetic and statistic properties of a new class of digital counting functions called restricted digital functions. We first present the main properties of sequences generated by a substitution or a $q$-automate followed by presenting the famous Thue-Morse sequence and its generalizations, then we compare these notions with the one of the restricted digital function.We then study the exponential sums associated with these restricted digital function and their implementation on the one hand to the study of uniform distribution modulo 1 of these restricted digital functions and on the other, to the study of the statistical properties of the arithmetic sequences defined by restricted digital functions.In the last part of this work we study the geometric representation of these exponential sums in the light of previous works of Dekking and Mendès-France which leads us to announce several open problems.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Informations

  • Détails : 1 vol. (98 p.)

Où se trouve cette thèse ?

  • Bibliothèque : Université Aix-Marseille (Marseille. Luminy). Service commun de la documentation. Bibliothèque de sciences.
  • Disponible pour le PEB
  • Bibliothèque : Université d'Aix-Marseille II. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.