Simulations expérimentale et numérique des effets retardés d'une explosion en milieu clos et en présence de produits liquides

par Laurent Munier

Thèse de doctorat en Energétique

Sous la direction de Richard Saurel.


  • Résumé

    Peut-on modéliser de manière fiable les effets collatéraux (en termes de quantité ou concentration de produits éjectés) et les conséquences d’une explosion en milieu clos, et en présence de produits chimiques liquides ? Pour répondre à cette vaste question, qui soulève spontanément de nombreux sous-problèmes, les travaux de thèse se sont déroulés en trois temps : 1/une étude qualitative et semi-quantitative du scénario général, afin de comprendre le déroulement chronologique des évènements, et d’émettre les hypothèses nécessaires à une modélisation, 2 /L’étude systématique des effets d’une explosion en milieu clos, en présence ou non de produits liquides. Avant de modéliser la dégradation du produit liquide soumis à une température et à une pression élevées, les expérimentations préliminaires ont en effet fait apparaître la nécessité de quantifier dans le temps et dans l’espace, les effets thermiques et mécaniques d’une explosion à volume constant, 3/L’élaboration de modèles 0D(t) à partir des conclusions précédentes afin, d’une part, d’estimer la durée de vie d’une phase liquide dans un environnement thermodynamique contraint et, d’autre part, de démontrer la possibilité de modéliser le problème global de manière réduite. En effet, le terme source d’un tel évènement ne peut être modélisé par une libération ponctuelle de produit : il s’agit d’une libération étendue dans le temps, par le biais d’un écoulement chaud a priori diphasique et de débit variable. Les couplages des phénomènes, observés expérimentalement, rendent nécessaires : 1 - Une modélisation instationnaire de l’évolution de la pression et une estimation du niveau de température atteint dans le volume d’étude, après détonation d’une charge explosive, 2 - Une modélisation de la libération de la phase liquide dans l’enceinte, sous forme de gouttes millimétriques ou de gouttelettes microniques 3 - Une modélisation instationnaire des transferts couplés de masse et d’énergie entre la phase liquide et la phase gazeuse en présence et prise en compte d’éventuelles réactions chimiques à haute pression et haute température 4 - Et enfin, une modélisation instationnaire des rejets à la brèche. L’étude d’une explosion à volume constant a montré qu’il est possible de modéliser de manière simple la montée continue en pression de l’enceinte par une fonction exponentielle croissante. Pour une configuration de référence donnée – explosion d’une sphère d’explosif dans un parallélépipède – la valeur maximale de pression est directement proportionnelle au taux de chargement en explosif, sur l’intervalle [0,01 – 0,6] kg/m3. Le passage à une géométrie différente ou plus complexe demande l’introduction d’un coefficient correctif pour traduire l’amplification (ou l’atténuation) de la combustion turbulente des produits de détonation avec l’air ambiant. En ce qui concerne le champ de température par contre, notre analyse a montré qu’il coexiste des zones chaudes et des zones dites « froides » et que la valeur de température homogène finale calculée à partir d’un code thermochimique ne peut constituer qu’une simple indication. Seule une estimation du volume respectif de ces zones a été proposée ici. Nous avons établi que les propriétés physico-chimiques des produits stockés sont un point clef du problème et on suppose ces données connues pour une gamme de produits chimiques liquides à pression ambiante, communément utilisés dans l’industrie. Seul le phénomène d’évaporation a été développé dans ce mémoire. L’introduction de réactions chimiques entre constituants se traduirait dans les modèles par des termes sources supplémentaires liés à l’apparition ou la disparition d’espèces.


  • Résumé

    Is it possible to model collateral effects due to an explosion (on a chemical facility for instance) occuring in a closed volume containing liquid chemical products storage units ?This thesis deals with a zerodimensionnal modelisation of such a 3D complex problem to asses the final thermodynamic state of chemical products released in the atmosphere. Developped sub-models take into account:- the unsteady time histories of the internal overpressure and temperature,- the unsteady liquid ejection (droplets sizes)- the unsteady modelisation of the local heat and mass transfers between the gas phase and the liquid phase- the unsteady ejection process of the resulting multiphase mixture in the environment.Models and sub-models are validated thanks to many experimental results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Provence. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.