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Mr. Hamish SHORT Université de Provence Examinateur
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un sujet d’actualité passionnant, nécessitant des techniques riches et variées.
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Je remercie encore András Juhász pour cette petite conversation parisienne qui a donné
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SOMMAIRE

Cette thèse s’articule en trois chapitres. Les deux derniers peuvent être lu indépendamment,
bien qu’on utilise dans le Chapitre 3 un résultat qui est démontré au Chapitre 2.

Le premier Chapitre est une introduction aux différents problèmes que l’on s’est posés
au cours de ce travail. On y présente les principaux résultats ainsi que le contexte dans
lesquels ils se placent.

Le Chapitre 2 fait l’objet d’un article soumis, c’est pourquoi il est rédigé en anglais. On
y étudie les feuilletages non-tendus sans composantes de Reeb, ainsi que les feuilletages
tendus. On remarquera que cela amène à comprendre qu’au voisinage d’une feuille torique,
le feuilletage possède toujours une composante de tourbillonement généralisée ou de spi-
ralement généralisée. Ceci nous permettra de donner une condition nécessaire et suffisante
pour qu’un feuilletage soit tendu en terme d’orientation transverse des feuilles toriques.
Dans cette thèse nous avons ajouté la Section 2.8.3 pour expliquer le lien avec la construc-
tion de Gabai [1983].

Le Chapitre 3 fait l’objet d’un article co-écrit avec Daniel Matignon, qui a été soumis,
c’est pourquoi il est aussi rédigé en anglais. Il traite de l’existence de feuilletage tendu dans
les 3-sphères d’homologies fibrées de Seifert. On y montre que toutes les 3-sphères d’homo-
logie entière fibrées de Seifert (sauf S3 et la sphère d’homologie de Poincaré) possèdent un
feuilletage tendu. On y exhibe aussi une infinité de sphères d’homologie rationnelle (non-
entière) fibrées de Seifert possédant un feuilletage tendu, et une infinité n’en admettant
pas.

Dans cette thèse nous avons encore ajouté le Lemme 3.5.1 pour expliquer la ca-
ractérisation des sphères d’homologie entière et rationnelle.





Table des matières

1 Introduction 11

2 Feuilles compactes et feuilletage tendu 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Reeb component and Turbulization . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Reeb component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Turbulization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Generalized turbulization . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Spiraling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.4 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.5 Attaching components of spiraling . . . . . . . . . . . . . . . . . . . 38

2.4.6 Reeb annulus spiraling . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Foliations near torus leaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Equivalence between trivial spiraling and turbulization . . . . . . . . 41

2.5.2 Proof of Proposition 1.0.7 . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6 Proposition 2.1.1 and consequences . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.1 Proof of Proposition 2.1.1 . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.2 Waldhausen manifold . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6.3 Partial converse: existence of torus leaf . . . . . . . . . . . . . . . . 52

2.7 Separating compact leaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.1 Non-taut foliation admitting Reeb component . . . . . . . . . . . . . 53

2.7.2 Non-taut and Reebless foliations . . . . . . . . . . . . . . . . . . . . 55

2.8 Non-separating torus leaf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9
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Chapitre 1

Introduction

Depuis plus de cent ans, la classification topologique des surfaces est bien connue. Par
contre la classification des variétés de dimension trois (compactes connexes orientables)
reste inachevée, bien que la résolution de la conjecture de la Géométrisation de Thurston
ait été une grande avancée. Une des piste privilégiée consiste à s’intéresser aux plonge-
ments de surfaces dans les 3-variétés.

Pour ce faire, on étudie les plongements de surfaces incompressibles (dont le π1 est
injectif) dans les variétés de dimension trois.
Par exemple, avant la célèbre preuve de Perelman, Thurston [1982, 1986b] donnait déjà
une démonstration topologique de la Géométrisation des 3-variétés dans le cas où la variété
est irréductible (toute sphère plongée borde une 3-boule) et possède une surface essentielle
(incompressible et non parallèle au bord).
Rappelons que la conjecture de la Géométrisation consiste à dire que toute 3-variété com-
pacte est soit hyperbolique, soit une variété de Seifert, soit elle possède un tore incompres-
sible, ce qui montre le rôle prédominant des tores plongés dans les 3-variétés, qui comme
nous le verrons, sera confirmé par l’étude des feuilletages.

Ainsi, en appliquant la célèbre JSJ-décomposition canonique (Jaco et Shalen [1979],
Johannson [1979] ) le long de tores incompressibles, on peut voir une 3-variété compacte
connexe irréductible et orientée, comme étant découpée par un nombre fini de tores es-
sentiels, et chaque sous-variété de dimension 3 bordée par ces tores est soit hyperbolique,
soit une variété de Seifert. Cela donne déjà une bonne approche des 3-variétés.
Une restriction à cette visualisation est pour les variétés à géométrie Sol (admettant un
revêtement fini par un fibré en tores sur le cercle avec homéomorphisme de recollement
hyperbolique), pour qui la décomposition JSJ éclate le long d’un tore incompressible don-
nant une variété n’admettant pas de géométrie à volume fini, alors que sans l’éclater, ces
variétés admettent la géométrie Sol qui est bien sûr à volume fini. Pour plus de détails,
voir l’article de Scott [1983].
Ces variétés à géométrie Sol admettent trivialement un feuilletage avec uniquement des
feuilles toriques, donc on s’intéressera moins à ces variétés.

La théorie des feuilletages peut être vue comme l’étape suivante dans l’étude du plon-
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gement de surfaces dans les 3-variétés. En effet, elle consiste à décomposer une 3-variété
en réunion disjointe de surfaces, tel que localement un voisinage ouvert soit découpé en
plans horizontaux ; c’est la notion de feuilletage de codimension 1. Plus précisément :

Definition 1.0.1. Un feuilletage de codimension k sur une n-variété M est une manière
de décomposer M en une collection de (n−k)-variétés connexes par arc ; appelées feuilles

du feuilletage.
Localement, la variété est homéomorphe à Rn, feuilleté par des “plans horizontaux” :

∀x ∈M, ∃U un voisinage ouvert de x et un homéomorphisme

h : U →]− 1, 1[n−k×]− ǫ, ǫ[k

tel que les (n− k)-variétés s’envoient sur les “plans horizontaux” :

]− 1, 1[n−k×{xn−k+1} × ...× {xn}

Un tel voisinage U sera appelé un voisinage distingué.
On se limitera au cas où n = 3 et k = 1, on aura donc :

U ∼=]− 1, 1[2×]− ǫ, ǫ[

On parle de Cr-feuilletage, r ∈ N, lorsque les applications de changements de coordonnées
sont de classe Cr et préservent le feuilletage.
C’est à dire qu’un feuilletage de classe Cr est un atlas (Uα, hα) dont les applications de
changements de coordonnées

tαβ = hα ◦ h
−1
β = (t1αβ , t

2
αβ , t

3
αβ) : hβ(Uα ∩ Uβ)→ hα(Uα ∩ Uβ)

sont Cr, les tiαβ, i = 1, 2, 3 sont des fonctions de (x, y, z) ∈ R3 et t3αβ ne dépend que de z.

Sauf mention du contraire, nous nous restreindrons à l’étude des feuilletage de classe
C2 (de codimension 1 sur les 3-variétés).

Historiquement, Reeb [1952] a introduit cette notion avec le point de vue des formes
différentielles, pendant sa thèse, sous la direction de Ehresmann. Il mit alors en évidence
un feuilletage particulier de S3, obtenu en recollant deux composantes de Reeb.
On rappelle qu’une composante de Reeb est un feuilletage de D2 × S1 par une feuille
torique au bord et des plans à l’intérieur comme dans la Figure 1.1 (voir encore le Cha-
pitre 2).

Il dégagea encore la notion de procédé de tourbillonement qui consiste à effacer d’une
3-variété, un tore solide feuilleté trivialement et de le remplacer par une composante de
Reeb sans changer la variété (voir le Chapitre 2, et la Figure 1.2).

Le premier problème qui s’est alors posé est celui de l’existence de feuilletages dans les
3-variétés qui seront toujours ici supposées compactes connexes orientables.

Thurston [1976] donna la preuve de l’existence de feuilletage de codimension 1 dans
toutes les 3-variétés compactes, en isotopant des distributions (champs de plans) de manière

12
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a disc

a half cylinder

identification

(a) Composante de Reeb (b) (Demi) composante de Reeb (source : Wikipedia)

Figure 1.1 – Deux représentations d’une composante de Reeb

tores transverses

Une feuille Une feuille

Procédé de tourbillonement

Une composante de Reeb

Figure 1.2 – Procédé de Tourbillonement

à les rendre intégrables, mais il ne donna pas de construction explicite.

Par ailleurs le procédé de tourbillonement de Reeb fit réaliser indépendamment par
Lickorish [1965] et Novikov [1964] (aidé de Zieshang) comment construire explicitement
un feuilletage avec composante de Reeb.
Ils partirent du fait de Lickorish [1962] et Wallace [1960] que toutes les 3-variétés com-
pactes fermées s’obtiennent en effaçant le voisinage tubulaire d’un entrelacs de S3 puis en
le recollant d’une manière spécifique à la 3-variété.
En voyant cet entrelacs dans le feuilletage de Reeb de S3 et en le rendant transverse
au feuille, (par un théorème d’Alexander [1923] c’est toujours possible) ; ils effacent un
voisinage de cet entrelacs feuilleté trivialement par D2 × S1 puis recollent (par le bon
homéomorphisme) avec le procédé de tourbillonement, des composantes de Reeb. Pour
plus de détails voir le Chapitre 2.
Le cas des variétés à bord est clair en considérant le double de la variété.

Finalement les feuilletages admettant des composantes de Reeb sont trop courants
pour donner des informations sur la variété sous-jacente.

13
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Une question naturelle vient alors se poser :

Question 1.0.2. Quelles sont les 3-variétés admettant un feuilletage sans composante de
Reeb ?

Rappelons tout d’abord une notion largement utilisée dans l’étude des feuilletages de
codimension 1.
Un feuilletage est dit transversalement orientable s’il existe un champs de vecteur conti-
nue, ne s’annulant pas, transverse aux feuilles. Cela revient à pouvoir choisir de manière
continue une normale aux feuilles. En fait cela est toujours possible quitte à considérer un
revêtement double de la variété.

C’est le célèbre théorème de Novikov [1965] qui donne des conditions nécessaires.

Theorem 1.0.3 (Novikov [1965]). Si M est une 3-variété compacte connexe et orientée,
M 6∼= S2 × S1, admettant un feuilletage F transversalement orienté et sans composante de
Reeb alors :

– π1(M) est infini ;
– Pour toute F ∈ F , π1(F ) s’injecte dans le π1(M), i.e les feuilles sont incompres-

sibles ;
– π2(M) = {0}

De plus en appliquant le théorème de Palmeira [1978], on obtient que sous de telles
hypothèses, le revêtement universel de M est R3.
Par ailleurs Rosenberg [1968] a montré que sous ces conditions, M est irreductible (toute
sphère plongée borde une 3-boule).
Une autre propriété importante des feuilletages sans composante de Reeb sera dégagée
par Thurston [1986a], dont nous ne donneront ici qu’une version sans bord :

Theorem 1.0.4 (Thurston [1986a]). Si M est une 3-variété fermée, compacte connexe et
orientée, admettant un feuilletage F transversalement orienté sans composante de Reeb,
alors :
Toute feuille F ∈ F compacte est de genre minimal dans sa classe d’homologie ; i.e pout
toute surface S surface plongée dans M telle que [S] = [F ] dans H2(M) alors :
genre(S) ≥ genre(F )

Gabai améliora la théorie en introduisant la notion de feuilletage tendu (i.e toutes
les feuilles sont traversées par une boucle ou un arc proprement plongé transverse au
feuilletage), plus générale que feuilletage sans composante de Reeb. En effet on verra au
Chapitre 2 qu’une feuille séparante, ou au bord (sous certaines conditions), ne peut être
traversée par une boucle, ou un arc proprement plongé, transverse au feuilletage.

Une question plus générale, toujours ouverte se pose alors :

Question 1.0.5. Quelles sont les 3-variétés admettant un feuilletage tendu ?

Une conséquence directe du Théorème 1.0.3 et du paragraphe ci-dessus, est que ni S3

ni la sphère d’homologie de Poincaré n’admettent de feuilletages tendus (leur π1 est fini).

14
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Par contre Gabai [1983] donna une construction explicite de feuilletages tendus sur les
3-variétés ayant une homologie non-triviale, qui montre que l’hypothèse de genre minimal
du Théorème 1.0.4 est fondamentale.

C’est dans ce cadre que s’inscrit cette thèse, qui s’intéresse tout d’abord (Chapitre 2)
au rôle crucial des feuilles compactes, afin de mieux comprendre les feuilletages non-tendus
sans composante de Reeb, et les feuilletages tendus (qui sont donc aussi sans composantes
de Reeb), puis dans un second temps on s’intéressera à l’existence de feuilletage tendu
dans les 3-sphères d’homologie fibrées de Seifert (Chapitre 3).

On remarquera que c’est au voisinage des feuilles toriques incompressibles que l’infor-
mation est concentrée.
En effet, si une feuille torique est compressible, par le Theorème 1.0.3, la 3-variété qu’elle
borde possède une composante de Reeb. Donc dans un feuilletage sans composante de
Reeb, les feuilles toriques sont incompressibles.
De plus le théorème de Goodman [1975] donne que dans les 3-variétés fermées, les seules
feuilles n’étant pas traversées par une transversale fermée sont les 2-tores, et donc qu’un
feuilletage non-tendu possède toujours une feuille torique.
On en conclut le corollaire suivant :

Corollary 1.0.6. Un feuilletage de classe C1, transversalement orienté, non-tendu et sans
composante de Reeb d’une 3-variété fermée possède une feuille torique incompressible.

Notons encore que le théorème de stabilité de Reeb [1952], nous dit que s’il existe une
S2-feuille, alors la variété est homéomorphe à S2 × S1, donc on ne considèrera jamais aux
feuilles sphériques.

C’est pour cela que l’on se concentre d’abord sur les composantes de tourbillonement
(que l’on généralise) et de spiralement. Cette dernière est une partie de la construction de
Gabai [1983] que nous détaillons et généralisons.

Les principaux résultats sont les suivants.
Au voisinage d’une feuille torique, il existe toujours ces composantes de tourbillonement
et de spirallement. Plus précisément :

Proposition 1.0.7. Soit M une variété admettant un C2-feuilletage transversalement
orienté F .
Supposons que M 6∼= T 2×S1 et M 6∼= T 2×I feuilleté exclusivement par des feuilles toriques.
Alors F contient soit une composante de spiralement généralisée soit une composante de
tourbillonement généralisée si et seulement si F admet une feuille torique.

De plus, on montre que, lorsque toutes les feuilles toriques sont au bord ; un feuilletage
est tendu si et seulement si il existe au moins une feuille torique au bord dont l’orienta-
tion transverse pointe à l’intérieur, et une autre feuille torique au bord dont l’orientation
transverse pointe à l’extérieur, on dira alors que le feuilletage est bien orienté, sinon on
dira qu’il est mal orienté. Plus précisément :

15
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Theorem 1.0.8. Soit M une 3-variété possédant un C1-feuilletage transversalement orienté
F .
Supposons que le bord de M est une réunion de feuilles toriques.
Supposons encore que F n’admette pas de feuille torique intérieure, ni d’anneau plongé
dont le feuilletage induit par F soit un anneau de Reeb. Alors,
F est tendu si et seulement si F est bien orienté.

Dans un second temps on se pose la question qui reste encore ouverte dans un cadre
général qui est :

Question 1.0.9. Quelles sont les 3-sphères d’homologie admettant un feuilletage tendu ?

En effet, si la 3-variété a une homologie non-triviale, on a vu que la construction de
Gabai [1983] donne un feuilletage tendu.
Parmi les sphères d’homologies, Brittenham, Naimi, et Roberts [1997] ont exhibés une
infinité de variétés graphées n’admettant pas de feuilletage tendu mais admettant un
feuilletage non-tendu sans composante de Reeb.
De plus, Roberts, Shareshian, et Stein [2003] ont quant à eux donné une famille infi-
nie de variétés hyperboliques n’admettant pas de feuilletages tendu (ici tendu et sans
composante de Reeb sont équivalents vu qu’il n’y a pas de tores incompressibles, voir le
Corollaire 1.0.6).
Jusqu’à maintenant il n’y avait pas de résultats similaires pour les sphères d’homologie
fibrées de Seifert.

Nous donnons dans cette thèse un critère arithmétique caractérisant l’existence de
feuilletage tendu dans les 3-sphères d’homologie fibrées de Seifert ; en utilisant les inva-
riants de Seifert [1933].
Celui-ci a été obtenu en comprenant dans un premier temps que l’existence de C2-feuilletage
tendu dans les 3-sphères d’homologie fibrées de Seifert est équivalente à l’existence de
feuilletage horizontal analytique. Puis nous utilisons le critère arithmétique caractérisant
l’existence de ce dernier, donné par Eisenbud, Hirsch, et Neumann [1981], Jankins et Neu-
mann [1985], Naimi [1994] en montrant que dans certains cas il est satisfait, alors que dans
d’autres il ne l’est pas. En particulier on montre les théorèmes suivants qui font l’objet
d’un article co-écrit avec Daniel Matignon :

Theorem 1.0.10 (Main Theorem 1). Soit M une 3-sphère d’homologie entière fibrées
de Seifert. Alors M admet un feuilletage tendu analytique si et seulement si M n’est ni
homéomorphe à S3 ni à la 3-sphère d’homologie de Poincaré.

Theorem 1.0.11 (Main Theorem 2). Soit n ∈ N.
Soit Sn l’ensemble des 3-sphères d’homologie rationnelle et non-entière fibrées de Seifert
avec n fibres exceptionnelles et admettant la géométrie S̃L2(R). Alors, pour tout n ≥ 3 :

(i) Il existe une infinité de M ∈ Sn qui admettent un feuilletage tendu analytique ; et
(ii) Il existe une infinité de M ∈ Sn qui n’admettent pas de C2-feuilletage tendu.
(iii) Il existe une infinité de M ∈ S3 qui n’admettent pas de C0-feuilletage tendu.

Ce manuscrit s’organise de la manière suivante.
La Proposition 1.0.7 ainsi que le Théorème 1.0.8 sont démontrés dans le Chapitre 2 ; alors
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que le Théorème 1.0.10 et le Théorème 1.0.11 sont prouvés dans le Chapitre 3.

Cette thèse ouvre des perspectives quant à la question de la caractérisation de l’exis-
tence de feuilletages tendus dans les sphères d’homologie graphées, en travaillant sur le
recollement de variétés de Seifert à bord obtenues à partir de sphères d’homologie où l’on
a enlevé un tore solide.

Un autre résultat en cours avec Daniel Matignon est de montrer que si une sphère
d’homologie fibrée de Seifert possède un C0-feuilletage sans feuille torique alors on peut
trouver un feuilletage horizontal. Ce qui montrerait avec le Théorème 1.0.11 qu’en fait, la
famille exhibée n’admet pas non plus de C0-feuilletage tendu.

17



S. CAILLAT-GIBERT

18



Chapter 2

Feuilles compactes et feuilletage

tendu

Ce chapitre fait l’objet d’un article soumis aux Annales de l’Institut Fourrier, c’est
pourquoi il est rédigé en anglais.

2.1 Introduction

In this chapter, all the manifolds M are 3-dimensional, compact, connected and ir-
reducible. The foliations studied on M are of codimension one (i.e the leaves are 2-
dimensional). Sometimes we will consider foliations on surfaces.

Since the works of Reeb [1952] and Novikov [1965], we know that all manifolds M as
above admit a codimension one foliation, (see Lickorish [1965]). The construction of this
foliation gives rise to a Reeb component. Foliations without Reeb component (or Reebless)
are more interesting, because they give deep information on the manifold M , for example
π1(M) is infinite or M ∼= S2 × S1 (see Novikov [1965]).
Gabai [1983], improved the theory by introducing the notion of taut foliation.
It is well known that taut foliations are Reebless; here we generalize this fact in Proposi-
tion 2.1.1 (a first version was already in Brittenham [1993a], or in Godbillon [1991] [lemma
3.8] for closed manifolds, or manifolds with only one torus boundary component).

Proposition 2.1.1. Let M be a 3-manifold with a transversely orientable foliation F .
If the boundary of M is a union of leaves with the same transverse orientation or if F
contains a compact separating leaf, then F is not taut.

Gabai [1983] showed that non-trivial second homology is a sufficient condition for the
existence of a taut foliation. The general problem of existence of a taut foliation in ho-
mology spheres is still open, even if many works partially answer the question (see for
example Brittenham, Naimi, and Roberts [1997] for graph manifolds, Chapter 3 which is
a complete classification for Seifert fibered manifolds and Roberts, Shareshian, and Stein
[2003] for hyperbolic manifolds).
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Proposition 2.1.1 has the following corollary :

Corollary 2.1.2. Any taut, transversely oriented foliation in a rational homo-
logy sphere, has no compact leaf.

Proof. Indeed, suppose it admits a compact leaf. A rational homology sphere cannot admit
any non-separating surface (this induces non-trivial homology). Hence this compact leaf
is separating in a closed manifold. By Proposition 2.1.1, the foliation cannot be taut; a
contradiction.

This fact is crucial for showing Theorem 1.0.10 and Theorem 1.0.11.

In Theorem 2.6.8, Goodman [1975] showed that a non-taut foliation always admits a
torus leaf. We will produce examples of non-taut foliations admitting a separating torus
leaf, and non-taut foliations admitting a non-separating torus leaf.

One goal of this chapter is to better understand non-taut and Reebless foliations. Note
that together with Theorem 1.0.3, if a foliation of a closed 3-manifold (or with bound-
ary leaves) is non-taut and Reebless, then it admits an incompressible torus leaf. Hence
a great part of this paper studies foliations near incompressible torus leaves. Note that
those non-taut and Reebless foliations never arise in hyperbolic closed manifolds (since
they cannot contain incompressible tori).
In this context we study two geometric processes : turbulization (T∗ component) and
spiraling (S∗ component) which occur near a torus leaf (or more generally near a closed
compact surface).
We will see that turbulization and spiraling can give rise to non-taut Reebless foliations.
Spiraling was first introduced by Gabai [1983], and here we first give a detailed definition
of it; then we link it to turbulization (which was first defined by G. Reeb).
Conversely if a foliation admits a torus leaf then roughly speaking, in a regular neighbor-
hood of this torus there is turbulization or spiraling, which is the aim of next proposition
(for precise definitions see Section 3.2).

Proposition 1.0.7 Let M be a manifold admitting a transversely oriented C2-foliation F .
Assume that if M is either T 2 × S1 or T 2 × I then F contains non-torus leaves.
Then F contains either a S∗, or a T∗ component, if and only if F admits a torus leaf.

If all the boundary components of M (with a transversely oriented foliation F) are
torus leaves; we say that F has a bad orientation if the transverse orientation on all the
torus boundary leaves is the same (all point inward or all point outward); otherwise we
say that it is a good orientation (at least two torus leaves have opposite orientation, one
inward and the other outward).
Then, we will see that the tautness of the foliation is deeply linked to the good or bad
transverse orientation as suggests the following theorem.

Theorem 1.0.8 Let M be a manifold with a transversely oriented C1-foliation F .
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Assume that the boundary of M is a union of torus leaves.
Assume also that F contains neither a torus leaf in its interior nor an embedded annulus
whose induced foliation by F is a Reeb annulus.
Then, F is taut if and only if F has a good orientation.

Organization of the chapter.

We organize this chapter as follows.

In Section 2.2, we recall basic definitions and notations.

Section 2.3 introduces the well-known Reeb’s component, and the geometric process
of turbulization in two different interesting ways.

In Section 2.4 we define the geometric process of spiraling and generalize it under
certain conditions.

In Section 2.5, we first prove the equivalence of these two geometric processes in a
particular case. For this, we describe C2-foliations near a torus leaf and prove Proposition
1.0.7.

Section 2.6 proves Proposition 2.1.1 which says that separating torus leaves or bound-
ary leaves with the same transverse orientation are contained in a non-taut foliation.
Furthermore, we explain why each hypothesis is necessary for Proposition 2.1.1. For this,
we consider the Waldhausen manifold and give an example of a taut foliation with a single
boundary leaf, non-transversely orientable with non-compact leaves on Q.
Then we prove Corollary 2.6.10 of Theorem 2.6.8 which states that a non-taut foliation of
a closed 3-manifold (or manifold with boundary leaves) always contains a torus leaf.
The rest of the chapter focuses on the two cases : separating torus leaves (Section 2.7)
and non-separating ones (Section 2.8).

Indeed, Section 2.7 provides a collection of different non-taut foliations as follows.
There are the ones with Reeb components, that we cannot remove (example on S3); and
the ones with Reeb components that we can remove, or non-taut and Reebless foliations;
(example on T 3).

The aim of Section 2.8 is to understand why a foliation with a non-separating torus
can be either taut or non-taut. We start with key examples, and we generalize by proving
Theorem 1.0.8 saying that if a foliation of a manifold with torus boundary leaves does not
contain embedded Reeb annuli, then it is taut if and only if it has a good orientation (at
least two boundary components whose transverse orientation is opposite).

Acknowledgement.

Proposition 2.7.3 is a result of an interesting discussion with András Juhász, and the
author wishes to thank him.

Perspectives.

We will see in section 2.7 some examples of non-taut and Reebless foliations, on dif-
ferent manifolds. One open question is the following :
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Question 2.1.3. What are the manifolds admitting a non-taut and Reebless transversely
oriented foliation, but not admitting a taut foliation?

Note that the first examples of such manifolds were found by Brittenham, Naimi, and
Roberts [1997] and they are graph manifolds, (we have seen that this question is trivial
for closed hyperbolic manifolds).
Note also that the examples given here of non-taut Reebless foliations, concern manifolds
admitting (another) taut foliation.
In Chapter 3 we give an infinity of examples of Seifert manifolds not admitting a taut
foliation, hence we should ask the following :

Question 2.1.4. Does any member of this family admit a non-taut and Reebless foliation?

Note also that nothing is known about the existence of taut foliations or of non-taut
and Reebless foliation among non-hyperbolic manifolds admitting an hyperbolic subman-
ifold.

2.2 Preliminaries

From now on, M will be a compact connected irreducible 3-manifold, possibly with
boundary, and F will be a codimension one foliation on M considered up to isotopy, unless
otherwise specified.
Furthermore we will let I = [0, 1], and denote X̊ the interior of X, and X the closure of
X, when it makes sense, and let T 2 ∼= S1 × S1.
For all the following the circle S1 is parametrized by {eiθ, θ ∈] − π, π]}, but for more
simplicity we will consider it as {θ ∈]− π, π]}.

Separating surfaces and non-separating surfaces. A properly embedded surface F
in a 3-manifold M is said to be a separating surface if M\F is not connected; otherwise,
F is said to be a non-separating surface in M . If F is a separating surface, we call
sides of F the connected components of M\F .

A 3-manifold is said to be reducible if M contains an essential 2-sphere, i.e. a 2-
sphere which does not bound any 3-ball in M . Then, either M is homeomorphic to S1×S2,
or M is a non-trivial connected sum. If M is not a reducible 3-manifold, we say that M
is an irreducible 3-manifold.

Incompressible torus. An embedded torus T in M is said to be incompressible if the
induced map π1(T )→ π1(M) is injective, otherwise we say that T is compressible.
Note that in an irreducible manifold, a compressible torus is always separating, while an
incompressible torus can be separating or non-separating.

Transverse orientation. Let M be a compact connected 3-manifold possibly with
boundary.
Let F be a codimension one foliation on M .
A foliation F of M is transversely orientable , if M admits a non-zero continuous vector
field, transverse (i.e non-tangent) to all the leaves.
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If we fix such a non-zero continuous vector field, then F is said to be transversely ori-

ented .

Reeb annulus.

First, we define a foliation of R2. Let f : R2 → R

f : (x, z) 7→ (x2 − 1)× exp(z)

f is a submersion, so it defines a foliation F , axially symmetric about the z-axis,
where :

– f−1({0}) is a union of two vertical leaf {x = 1} and {x = −1}.

– f−1({c2}) are leaves satifying the equation
z = log(c2)− log(x2 − 1), for |x| > 1.
When z → +∞, x2 → 1 so the leaves tend toward the vertical leaves.
When z → −∞, x2 → +∞.
The general shape is − log.

– f−1({−c2}) are parabolic leaves satifying the equation z = log(c2)− log(1− x2), for
|x| < 1. They meet the z-axis for z = log(c2).
When z → +∞, x2 → 1, so the leaves tend toward the vertical leaves.

Figure 2.1: Foliation F of R2

F is invariant under integral translations (and in fact any translations), along the z-
axis; then it induces foliations on an annulus as follows.

Consider the restricted foliation of F on the set R = {(x, z) ∈ R2,−1 ≤ x ≤ 1}. The
annulus R/∼ where (x, z) ∼ (x, z + k), k ∈ Z admits an induced foliation by F , and is
called Reeb annulus as illustrated in Figure 2.2.

Direction of rotation of a spiral foliation. LetX = {(x, θ), x ∈ I, θ ∈]−π, π]} ∼= I×S1

be an annulus foliated with two circle boundary leaf and spiral leaves in the interior of X
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Figure 2.2: Reeb annulus (from Wikipedia)

(see Remark 2.3.6 for a definition of this foliation) we call this foliation a spiral foliation .
Keeping fixed the two boundary components, there are two non-isotopic such foliations
drawn in Figure 2.3.

Definition 2.2.1. Consider a foliation of X with spiral foliation. Choose any spiral leaf
and orient it so that x grows in I (i.e fix the direction of rotation so that x grows).
That induces an orientation by continuity on all the leaves of this foliation hence on the
circle leaves (which is the same). If this orientation is a clockwise direction of rotation we
call that foliation a clockwise spiral foliation and the spiral leaves are called clockwise

spiral, otherwise we call it anti-clockwise spiral foliation, and the spiral leaves are
called anti-clockwise spiral.

Another foliation of the annulus, denoted by C.

Now we construct a foliation of the annulus where one boundary component is trans-
verse to the foliation and the other is tangent. The leaves will be homeomorphic to R+,
except one circle boundary leaf.
Consider the restricted foliation of F on the set Rr = {(x, z) ∈ R2, 1 ≤ x ≤ r}, for r > 1;
(or equivalently {(x, z) ∈ R2, r ≤ x ≤ 1}, for r < 1).
The annulus Rr/∼ where (x, z) ∼ (x, z + k), k ∈ Z admits an induced foliation by F that
we will call C.

C admits a circle boundary leaf, and the other boundary component is transverse to
the foliation. All the non-compact leaves are homeomorphic to the ray R+ and are limiting
along the circle boundary leaf as illustrated in Figure 2.4.

Taut foliation. Let F be a foliation of a 3-manifold M . An embedded loop, or respec-
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(a) Clockwise spiral foliation (b) anti-clockwise spiral foliation

Figure 2.3: Direction of rotation of the foliations on X

Figure 2.4: One non-compact leaf of the foliation C

tively a properly embedded arc γ (if ∂M 6= ∅), is called transverse loop or respectively
transverse arc if ∀F ∈ F such that γ ∩ F 6= ∅, the intersection γ ∩ F is transverse.
F is taut , if for every leaf F of F there exists γ an embedded transverse loop, or properly
embedded transverse arc (if ∂M 6= ∅), such that γ ∩ F 6= ∅; and if F|∂M contains no Reeb
annulus.

The following theorem is the famous theorem of Gabai [1983] on the existence of taut
foliations, which is stated here for closed 3-manifolds.

Theorem 2.2.2 (Gabai [1983]). Let M be a closed 3-manifold. If H2(M ;Q) is non-trivial
then M admits a taut foliation.

Foliated component. Suppose M admits a foliation F , and that FV is a foliation of a
submanifold V of M . We say that M admits a foliated component FV , if the induced
foliation by F on V is isotopic to FV in M .

Foliation preserving homeomorphism. Let M be a manifold admitting a foliation F
and N a manifold admitting a foliation G. An homeomorphism f : M → N is a foliation
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preserving homeomorphism , if f sends the leaves of F on the leaves of G, i.e if f
preserves the leaves.

2.3 Reeb component and Turbulization

In this section we first define Reeb’s component which is a foliation of a solid torus
tangent to the boundary, and then we define a particular foliation of T 2 × I, where one
torus boundary component is a leaf and the other is transverse to the foliation, which will
be called turbulization component.
Reeb’s component and the process of turbulization were firstly defined by Reeb [1952].
Nowadays this construction is very common, and can be found for example in the notes
of Brittenham [1993a].
Finally, we define generalized turbulization.

2.3.1 Reeb component.

First, we define a foliation of R3 illustrated in Figure 2.5.
Note that this is the foliation of R2 of Figure 2.1 in each vertical plane containing the
z-axis of R3.

Let

f : R3 → R

(x, y, z) 7→ (x2 + y2 − 1)× exp(z)

f is a submersion, and defines a foliation F of R3, symmetric about the z-axis, where :

– f−1({0}) is a vertical cylinder leaf C centered in 0 with radius 1.

– f−1({c2}) are leaves homeomorphic to a cylinder, because
x2 + y2 = 1 + c2 exp(−z), hence x2 + y2 > 1.
When z → +∞, x2 + y2 → 1 so the leaves tend toward C.
When z → −∞, x2 + y2 → +∞, i.e. the base of the cylinder is flaring.

– f−1({−c2}) are paraboloid leaves which intersect the z-axis for
z = 2 log(c), when x2 + y2 < 1, .
When z → +∞, x2 + y2 → 1, so the leaves tend toward C.

Let F be the restricted foliation on a vertical solid cylinder D2 × R, of radius r ≥ 1,
included in R3, denoted Cr. F is invariant under integral vertical translations (along the
z-axis); hence it induces a foliation on the solid torus D2 × S1 denoted Tr, of radius r.

Tr contains T1 which is a solid torus of radius 1 (r ≥ 1), and a Reeb component is
the induced foliation by F on T1, see Figures 2.6 and 2.8.
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Figure 2.5: Foliation F of R3

Figure 2.6: (Half) Reeb component (from Wikipedia).

Note that a Reeb annulus correspond to a 2-dimensional Reeb component.

Definition 2.3.1. Let F be a foliation of a 3-manifold M . F is Reebless if it does not
admit any Reeb component.

2.3.2 Turbulization.

In this subsection we define in two interesting different ways the turbulization com-
ponent denoted for all the following by T . We talk about turbulization when one torus
boundary is foliated by circles. So we first need the following definition.

Definition 2.3.2. A circle foliation on a torus, (respectively on an annulus), is a folia-
tion of T 2 (respectively of S1×I) where all the leaves are homeomorphic to S1. Hence, the
leaves are parallel copies of an essential simple closed curve on T 2 (respectively on S1×I).
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Definition 2.3.3. Let us call T the foliation induced by F on Tr\T̊1, for r > 1 (or equiv-
alently on T1\T̊r, for r < 1). The resulting foliated manifold is homeomorphic to T 2 × I,
with a torus boundary leaf (∂T1), and another torus boundary component, transverse to
the foliation T , which induces a circle foliation on it, as in Figure 2.7.

Definition 2.3.4. The foliation T is trivially transversely oriented. We will denote T +

(respectively T −), the transversely oriented foliation of T 2× I obtained from T , where the
transverse orientation on the torus leaf points out of (respectively into) T 2 × I.

a torus leaf

a leaf

identification

Figure 2.7: Foliation T of T 2 × I : Turbulization

Definition 2.3.5. Let M be a manifold with a torus boundary component T and admitting
a foliation which induces on T a circle foliation.
The process of turbulization consists of pasting on T (by homeomorphism) a T 2 × I
component, foliated by T (with the notations above).

Roughly speaking, the process of turbulization, changes a circle foliation on a torus to
a torus leaf, as in the trivial following example in Figure 2.8.

a disc

a half cylinder

identification

Figure 2.8: Reeb component

Remark 2.3.6. A Reeb component contains the foliation T .

Let us give another definition, that we will also use later.
Let A = {(x, θ), x ∈ [0, 1], θ ∈] − π, π]} be an annulus embedded in R3, and consider the
following foliation called F on A× I.
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Let f be a diffeomorphism of the unit interval such that {0} and {1} are fixed point, and
f is strictly increasing.
Denote for each x ∈ [0, 1], and z ∈ I, the circle λz

x = {(x, θ, z), θ ∈]− π, π]} in A× I.
Let us define the foliation Ff .
The leaves of Ff are the annuli Aα bounded by λ0

α and λ1
f(α) in A× I, for each α ∈ [0, 1],

as in Figure 2.9 where we have chosen f(t) > t.
This foliation Ff is called the suspension foliation of f along λ0

0 on A× I.

More precisely Aα =
⋃

z∈[0,1]

λz
[f(α)−α]z+α.

Indeed the segment joining α to f(α) for a fixed angle θ ∈] − π, π]}, with the chosen
coordinates, is defined by the equation x = [f(α)− α]z + α in A× I.
Obviously A0 and A1 are vertical leaves.

Figure 2.9: Foliation Ff of A× I

That leads us to construct a foliation on T 2 × I as follows:
Consider T 2 × I = (A× I)/∼, where (x, θ, 0) ∼ (x, θ, 1).
Ff induces a foliation on T 2 × I where T 2 × {0} and T 2 × {1} are torus leaves.

Now, if we choose f so that f(t) > t or f(t) < t, for all t ∈ I̊, the foliation T is isotopic to
the induced foliation by Ff on {(x, θ, z), x ∈ [0, 12 ], θ ∈]−π, π], z ∈ [0, 1]}/∼, or equivalently
on {(x, θ, z), x ∈ [12 , 1], θ ∈]− π, π], z ∈ [0, 1]}/∼.
Indeed the torus {(12 , θ, z), θ ∈] − π, π], z ∈ [0, 1]}/∼ is everywhere transverse and admits
a circle foliation.
Note that if ∃t0 ∈ I̊/f(t0) = t0 that induces an interior torus leaf in Ff .

Remark 2.3.7. Note that the foliation induced by Ff on the transverse annulus Aπ =
{(x, π, z), x ∈ [0, 1], z ∈ [0, 1]}/∼ in T 2 × I is described on Figure 2.10.
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Remark 2.3.8. Note that the choice f(t) > t or f(t) < t determine different senses of
rotation along the torus leaf T = {(1, θ, z), θ ∈] − π, π], z ∈ [0, 1]}/∼. That is the reason
why we give the following definition.

(a) (b)

Figure 2.10: Induced foliation by F on Aπ (isotopic representations)

Definition 2.3.9. If f(t) > t we say that Ff is a clockwise foliation, and if f(t) < t, we
say that Ff is a anti-clockwise foliation.

Remark 2.3.10. Note that if Ff is a clockwise (respectively anti-clockwise) foliation then
the induced foliation on Aπ is a clockwise (respectively anti-clockwise) spiral foliation.

Turbulization has a lot of applications; one of the most famous is the following The-
orem from Lickorish [1965] and also showed independently by Novikov [1964] (helped by
Zieschang) :

Theorem 2.3.11. Every 3-manifolds admit a codimension one foliation, possibly with a
Reeb component.

Proof. (idea) We may recall that every closed 3-manifold M is obtained by deleting a
tubular neighborhood of a link L in S3, and by gluing it back differently. Let us consider
S3 foliated by two Reeb’s component glued along their torus leaf. We can isotope L so
that it meets transversely the leaves of this foliation. By choosing a thin enough tubular
neighborhood of L, denoted by N(L), we may assume that the induced foliation on N(L)
is the one by disks transverse to the boundary of N(L). Then we can remove (the interior

of) N(L), and glue some T components along each boundary component of S3\ ˚N(L), i.e
we apply the process of turbulization. Then we obtain a manifold with torus boundary
leaves, and it remains to glue Reeb’s component along those boundary leaves by the well
chosen way, to obtain M with a foliation (with Reeb components).
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2.3.3 Generalized turbulization

Turbulization can be defined in a more general context.
The idea of turbulization is to extend a foliation of T 2 × {1} (either by circles or dense
lines on the torus) in T 2 × I to obtain T 2 × {0} as a torus leaf.
In the preceding paragraph we have done it for a circle foliation on T 2×{1}, here we want
to do a similar construction for a dense foliation on T 2 × {1}. Indeed, when the foliation
on a torus is C2, Denjoy [1932] and Siegel [1945] showed that either there is a circle leaf or
the foliation is dense. When there is a circle leaf there are two cases, either this is a circle
foliation, or there are spiral leaves between circles leaves. The last case will be taken in
account with spiraling, while the former case has already been studied.

Let us formulate it more precisely.

One way to define generalized turbulization is as follows :
Consider A× I = {(x, θ, z), x ∈ [0, 1], θ ∈]− π, π], z ∈ [0, 1]}, (A is an annulus).
For each z ∈ [0, 1] set Az = {(x, θ, z), x ∈ [0, 1], θ ∈]− π, π]}.
Now foliate each Az by the foliation C (of Figure 2.4), to obtain a foliation on A×I by C×I.

This foliation is invariant by rotation along the z-axis; hence that induces a foliation
of T 2 × I by identifying A0 to A1 by a foliation preserving homeomorphism f from A0 to
A1 such that f({(0, θ, 0), θ ∈]− π, π]}) = {(0, θ, 1), θ ∈]− π, π]}, and f sends a spiral leaf
to a spiral leaf, for example using any rotation.
Consider T 2 × I ∼= (A× I)/∼ where ((x, θ), 0) ∼ (f(x, θ), 1).
Note that here T 2 × {x} ∼= {(x, θ, z), θ ∈]− π, π], z ∈ [0, 1]}/∼, for each x ∈ [0, 1].

Definition 2.3.12. We call this foliated component a generalized turbulization compo-
nent, and we denote it by T∗(f), as illustrated in Figure 2.11.

Identi�cation by

Figure 2.11: Generalized turbulization : foliation T∗(f)

There are two crucial examples :
When f is a rotation rational rational angle, the non-compact leaves are homeomorphic
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to R+ × S1, and there is one compact leaf : the torus T 2 × {0}. Moreover the leaves of
the circle foliation on T 2 × {1} have rational slopes (recall that those are essential simple
closed curves).
Then, note that T∗(f) (of Figure 2.11) and T (of Figure 2.7) are homeomorphic. When f
is a rotation of irrational angle, there is no cylinder leaf, i.e all the non-compact leaves are
homeomorphic to R+ ×R, and the induced foliation on T 2 × {1} is dense (corresponds to
irrational slopes).

2.4 Spiraling

Turbulization extends a circle foliation or a dense foliation on a torus T 2 × {0} in a
foliation of the 3-manifold T 2 × I such that T 2 × {1} is a leaf (turbulization).
The goal of spiraling (here) is to extend a foliation on the torus by spirals and circles.

For this we use the construction of Gabai, who defines spiraling in a more general
context which is the following.
Let Sg be a closed orientable compact genus g ≥ 1 surface. We start with a foliation F on
Sg×{0} which has a two dimensional leaf and an annulus with a one dimensional foliation
tangent to its boundary.
Then, we extend it to a foliation of Sg × I, where Sg × {1} is a leaf.

Here we explain this construction providing more details and generalize it when g = 1.

We first construct a foliation of Sg × I that we will call spiraling component. We pro-
ceed into four steps which are subsections.

– Step 1 : Notations and conventions, we fix δ and λ two essential simple closed curve
on Sg such that #(λ ∩ δ) = 1.

– Step 2 : Suspension foliation along λ.
– Step 3 : Superposition along δ.
– Step 4 : Repeating infinitely many times Step 3 (infinite induction).

Subsection 2.4.5 applies this construction to extend a foliation F of a manifold M with
a boundary component Sg, such that F|Sg

admits a transverse annulus to a foliation of
M ∪ (Sg × I) such that Sg = Sg × {0} and Sg × {1} is a leaf.

Finally, Subsection 2.4.6 generalizes spiraling when g = 1 and when Sg × {0} admits
Reeb annulus.

2.4.1 Step 1

We consider a closed compact surface of genus g ≥ 1, denoted Sg, with a non-separating
simple closed curve δ embedded in Sg. We set Aδ = δ × I a regular neighborhood of δ in
Sg and we identify δ and δ × {0}.
Let λ be simple closed curve embedded in Sg whose geometric intersection number with
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δ is one. Note that λ is non-separating. Similarly we will denote Aλ = λ × I a regular
neighborhood of λ in Sg and we identify λ and λ× {0}.

Figure 2.12: A choice of λ and δ.

Consider the product foliation on (Sg\Aλ)×I and denote the leaves by Qt = (Sg\Aλ)×
{t}, t ∈ I.

2.4.2 Step 2

Here we construct a particular foliation of Sg×I, where the two boundary components
are leaves, and the interior leaves are non-compact.

Let f be a strictly increasing diffeomorphism of I such that f(0) = 0 and f(1) = 1.
Consider the suspension foliation of f along λ×{0}×{0}, in λ×{0}× I, where the leaves
are the annuli cobounded by λ×{0}×{t} and λ×{1}×{f(t)} in Aλ×I, (see Figure 2.9).
Now extend the product foliation on Sg × I by gluing this foliated component Aλ × I by
the identity on (Sg\Aλ) × I, and we denote the resulting foliation of Sg × I by Ff . To
draw Ff more easily, we represent Aλ differently in Figure 2.13.
Note that in all the following figures we have chosen f(t) > t.

Note that for all t ∈ I̊, this extension adds to Qt two annuli : one is joining Qt to Qf(t)

and another annulus is joining Qt to Qf−1(t).
Of course this extension adds an annulus to Qt, for t ∈ {0, 1}, which implies that Sg×{0}
and Sg × {1} are leaves of Ff , and the other leaves tends toward those two.

To represent Ff , we can draw a transverse cut of this foliation, i.e along δ × {0} × I,
as in Figure 2.14. Note that here, δ × {0} × I plays the role of Aπ of Figure 2.9, see also
Figure 2.15.

2.4.3 Step 3

The goal of this step is to paste together (Sg\Aδ)× I0 and (Sg\Aδ)× I1, and to extend
it nicely; where I0 = [0, 1/2], and I1 = [1/2, 3/4].
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Figure 2.13: Suspension foliation along Aλ × I in Sg × I

Figure 2.14: Transverse cut along δ × {0} × I

Consider (Sg\Aδ)× I0 and (Sg\Aδ)× I1 both with the foliation Ff of Figure 2.15.
Glue them along (Sg\Aδ)×{1/2} to obtain a manifold homeomorphic to (Sg\Aδ)×[0, 3/4].
Now we do the following extension (see Figure 2.16).

We identify δ×{0}× I1 to δ×{1}× I0 by a foliation preserving homeomorphism h (i.e
sending an interior leaf on an interior leaf, and sending δ×{0}×{3/4} on δ×{1}×{1/2},
and δ × {0} × {1/2} on δ × {1} × {0}, for example any rotation).

In particular, this amounts to gluing one annulus called A
3/4
δ between δ×{0}×{3/4} and

δ × {1} × {1/2}; and an other annulus A
1/2
δ between δ × {0} × {1/2} and δ × {1} × {0},

which connects the compact leaves (Sg\Aδ)×{0}, (Sg\Aδ)×{1/2} and (Sg\Aδ)×{3/4}.
There may exist annuli connecting the circles; which correspond to possible interior fixed
points of f .
Moreover, this amounts to gluing bands R× I where one boundary spiral R× {0} lies on
δ×{0}×I1 and the other boundary spiral R×{1} lies on δ×{1}×I0, so that the foliation
matches.
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Figure 2.15: Foliation Ff along Aδ

-gluing

Figure 2.16: (δ, f, Id)-gluing between (Sg\Aδ)× I0 and (Sg\Aδ)× I1

We denote this extension by a (δ, f, h)-gluing between (Sg\Aδ)× I0 and (Sg\Aδ)× I1,
and the foliation is called F(f, I0, I1, h).

Note that we can make another choice to make this extension. Indeed, we can also
identify δ×{0}×I0 and δ×{1}×I1 by a foliation preserving homeomorphism h similarly.
That gives another direction of rotation along the boundary leaf.
If we do the first choice we call it a clockwise (δ, f, h)-gluing otherwise if we make the
second choice we call it a anti-clockwise (δ, f, h)-gluing . But for more simplicity when
the direction of rotation does not matter we will just say a (δ, f, h)-gluing.

The boundary of the resulting manifold has two connected components as shown in
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Figure 2.17 :

– S0
g = δ×{0}× [0, 1/2]∪A

1/2
δ ∪ (Sg\Aδ)×{0}; where δ×{0}× [0, 1/2] is transverse

and A
1/2
δ ∪ (Sg\Aδ)× {0} is tangent to the foliation F(f, I0, I1, h).

– S
3/4
g = δ × {1} × [1/2, 3/4] ∪ A

3/4
δ ∪ (Sg\Aδ) × {3/4}; where δ × {1} × [1/2, 3/4] is

transverse and A
1/2
δ ∪ (Sg\Aδ)× {3/4} is tangent to the foliation F(f, I0, I1, h).

Figure 2.17: Boundary of the foliation F(f, I0, I1, Id)

2.4.4 Step 4

The aim of this step is to repeat infinitely many times Step 3, in order to be a foliation
of Sg × I where Sg × {1} is a leaf and Sg × {0} is foliated as S0

g = δ × {0} × [0, 1/2] ∪

A
1/2
δ ∪ (Sg\Aδ)× {0} defined in Step 3.

Some notations :
Set i0 = 0.
Let n ∈ N∗, we set :

in =

n∑

k=1

1

2k

and In = [in, in+1], for all n ∈ N.

Note that lim
n→+∞

n∑

k=1

1

2k
= 1; hence

⋃

n∈N

In = I.

For all n ∈ N, consider (Sg\Aδ)× In with the foliation Ff defined in Step 2.

Let hn, n ∈ N be foliation preserving homeomorphisms between δ × {0} × In+1 and
δ × {1} × In sending an interior leaf on an interior leaf, and sending δ × {0} × {in+1} on
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Figure 2.18: Intervals In

δ × {1} × {in}, and δ × {0} × {1/2} on δ × {1} × {0}.

For each n ∈ N, apply clockwise (δ, f, hn)-gluing (defined in Step 3) between (Sg\Aδ)×
In and (Sg\Aδ) × In+1, constructing the foliation F(f, In, In+1, hn), and consider the
closure of this manifold, to obtain Sg × I with the clockwise foliation

F(f, hn, n ∈ N) =
⋃

n∈N

F(f, In, In+1, hn)

Since
⋃

n∈N

In = I, the homeomorphisms hn, n ∈ N can be considered as a single homeo-

morphism h of I; so for more simplicity we denote this foliation by F(f, h) which will be
called the clockwise foliation F(f, h).

We similarly define a foliation by considering only anti-clockwise (δ, f, hn)-gluing for
all n ∈ N to obtain a anti-clockwise foliation F(f, h).

This amounts to considering (Sg\Aδ)×
⋃

n∈N

In, and to extending the foliation by pasting

annuli called Ain
δ for n ∈ N∗ between δ×{0}×{in} and δ×{1}×{in−1}, and bands R× I

between the spirals R×{0} on δ×{0}× {in} and the spirals R×{1} on δ×{1}× {in−1}
with respect to hn.

When n tends towards the infinity, in tends toward 1, so we attach an annulus A1
δ

between δ × {0} × {1} and δ × {1} × {1}, hence Sg × {1} is a leaf.

Moreover, as in Step 3, S0
g = δ × {0} × I0 ∪A

1/2
δ ∪ (Sg\Aδ)× {0} is the second boundary

component homeomorphic to Sg×{0}, where δ×{0}×I0 is transverse and A
1/2
δ ∪(Sg\Aδ)×

{0} is tangent to the foliation F(f, h).

Note that the leaf starting in δ×{0}×{0} is homeomorphic to the half-infinite ladder
as shown in Figure 2.19.

Remark 2.4.1. Note that the induced foliation on the transverse annulus X = δ× {0} ×⋃

n∈N

In has an infinite number of circle leaves (which are
⋃

n∈N

δ×{0}× {in}). Between two

consecutive such circle leaves there is the suspension foliation induced by f .

Now we can define Spiraling.

Definition 2.4.2. That construction of F(f, h) is called spiraling.
We say that the nearby leaves of Sg×{1} in the clockwise (respectively in the anti-clockwise)
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Figure 2.19: Interior leaf starting in δ × {0} × {0}

foliation F(f, h) are clockwise spiraling (respectively anti-clockwise spiraling) along
Sg × {1}.
We will denote the component Sg×I with the foliation F(f, h) by Sg(f, h), or when there is
no ambiguity Sg, with possibly adding the direction of rotation (clocwise or anti-clockwise).
This foliation is of course transversely orientable; let S+

g (respectively S−g ) be the foliation
F(f, h) where the transverse orientation on the closed compact boundary leaf Sg × {1},
points out (respectively into) Sg × I.

Remark 2.4.3. If f = Id there are no spiral leaves, there are only half-infinite cylinders
(g = 1), or half-infinite ladders (g > 1), and the foliation does not depend on h. In this
case we will denote this foliation by Sg(Id).

2.4.5 Attaching components of spiraling

Consider a 3-manifold M with a foliation F , admitting a boundary component home-
omorphic to Sg. Assume that F|Sg

has circle and spiral leaves contained in an annulus A
with circle boundary leaves, and that F|Sg\A is a leaf.
We want to extend F in a neighborhood Sg × I (where Sg = Sg × {0}), so that Sg × {1}
is a leaf.

By the above construction it suffices to choose f such that the foliation on δ × {0} ×
[0, 1/2] and the foliation on A are homeomorphic, and glue δ × {0} × [0, 1/2] on A, and

Sg\A on (Sg\Aδ)× {0} ∪A
1/2
δ defined in Step 3, (see Figure 2.17).

It remains to make the good choice of f .

Recall that A is foliated by spirals and circles, and denote by G its foliation.
G is a foliation of an annulus with circles boundary leaves, because Sg\A is a leaf.
Hence G is isotopic to a union of the annuli of Figure 2.20.

Considering that A = S1 × I, denote by τ = {∗} × I a transverse arc parametrized by
[0, 1].
Obviously, if F is a compact leaf of G (hence a circle) then F ∩ τ = {∗}× {x}, for a single
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(a) Circle foliation (b) Spiral foliation

(c) Other possibility (c) Other possibility

Figure 2.20: Taut foliations of the annulus with boundary leaves.

x ∈ I, and if F is non-compact, there are infinitely many such x.
Let us call X = {x ∈ I/∃F ∈ G, F ∩ τ = {∗} × {x}}. By definition of G, {0, 1} ⊂ X.
Note that possibly there exists 0 ≤ a < b ≤ 1 such that [a, b] ⊂ X.
If X = I, G has trivial holonomy, i.e. G is a circle foliation.

Let f be a smooth, increasing map from I to I, such that f X is the identity on X; and
assume that f is strictly increasing out of X, and that f gives rise to the good direction
of rotation. That is to say that for each spiral F of G, there exists x ∈ F ∩ τ ∩ (I\X), and
we denote by IF the connected component of x ∈ I\X. If F is a clockwise spiral, we set
f(t) > t, t ∈ IF , otherwise (F is anti-clockwise) we set f(t) < t, t ∈ IF .
Up to isotopy, f is the holonomy map of G, but we will not use holonomy here.

By constructing the suspension foliation along λ (Step 2), we create spiral and circle
leaves on δ×{0}× [0, 1/2]. More precisely, we create circle leaves when f is the identity i.e
when there are circles on G, and spiral leaves out of X, with the corresponding direction
of rotation; which is exactly the expected foliation (up to isotopy).

Remark 2.4.4. Note that given a transverse orientation on the tangent part Sg\A, say
outward, (respectively inward), spiraling amounts to gluing on Sg a component S+

g (re-
spectively S−g ).
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2.4.6 Reeb annulus spiraling

When g = 1, we can also define spiraling for non-taut foliations, i.e when the induced
foliation G on A admits Reeb annuli, as soon as it has boundary circle leaves.

We keep the previous notations of Step 4, and recall that
⋃

n∈N

In = I.

Indeed, here S1 is a 2-torus that we denote T , hence T\A is an annulus so we have the
following representation :

I × S1 × I ∼= {(x, θ, t), x ∈ I, θ ∈]− π, π], t ∈ I}, and denote for t ∈ I δ × {0} × {t} =
{(0, θ, t), θ ∈]− π, π]}.

Now foliate each annuli δ × {0} × In, n ∈ N, and δ × {1} × In, n ∈ N, by a foliation
isotopic to G (the foliation is G up to dilatation).
Consider T × I ∼= (I × S1 × I)/∼
where (0, (θ, t)) ∼ (1, hn(θ, t)), for given foliation preserving homeomorphisms hn sending
δ × {0} × In, on δ × {1} × In, for each n ∈ N, depending on the integer n such that
t ∈ In. As above all the homeomorphisms hn can be seen as a single homeomorphism

from δ × {0} × I, on δ × {1} × I since
⋃

n∈N

In = I.

Denote for each t ∈ I and x ∈ I, δtx = {(x, θ, t), θ ∈]− π, π]} ∼= S1.

With those coordinate, we assume A ∼= δ × {0} × I0 = {(0, θ, t), θ ∈]− π, π], t ∈ I0} ⊂

T × I; and T\A ∼= {z ∈ δ
1

2
(1−x)

x , x ∈ [0, 1]}; (see Figure 2.21).

In δ×I×I consider for all n ∈ N∗, the annulus leaves denoted Ain connecting δ×{0}×in

to δ × {1} × in−1, i.e Ain =
⋃

x∈I

δ
− 1

2n
x+in

x (note that A1/2 = T\A).

Foliate each solid cylinder bounded by δ×{0}×In+1∪A
in+1∪δ×{1}×In∪A

in , n ∈ N by a
foliation isotopic to G×I with respect to the foliation set on the annuli δ×{0}×In, n ∈ N,
and δ × {1} × In, n ∈ N.

Remark 2.4.5. This choice of foliated solid cylinder induces a clockwise foliation while
the other choice (joining δ × {0} × In to δ × {1} × In+1, n ∈ N) induces a anti-clockwise
foliation.

When n tends towards the infinity we add the torus leaf T ×{1}, because A1 connects
δ × {0} × 1 to δ × {1} × 1 since lim

n→+∞
in = 1.

Definition 2.4.6. We call that component generalized spiraling component, denoted
S∗(G, h), or S∗ when there is no ambiguity.

Note that since the identification is by a foliation preserving homeomorphism; if G has
no Reeb annuli, S∗(G, h) = S1(f, h), where f is a suspension homeomorphism defining G.

The two boundary components are :
T\A ∪A, where A is transverse and T\A is tangent to the foliation.
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The torus leaf T × {1}.

Let us describe the induced foliation by S∗(G, h) on the properly embedded transverse
annulus X = δ × {0} × I.
∂X is included in leaves, i.e that foliation admits circle boundary leaves.
It has infinitely many circles leaves in its interior. Indeed, the leaf of δ × {0} × {0} is an
half infinite cylinder, and its intersects X in each δ × {0} × {in}, n ∈ N.
The induced foliation on each annulus δ×{0}× In, n ∈ N (included in X), is G; hence we
have the following Remark.

Remark 2.4.7. The previous construction of S∗(G, h) when G admits at least one Reeb
annulus contradicts part (i) of Theorem 4.2.15 of Hector and Hirsch [1986], which says
that a foliation of an annulus tangent to the boundary can only admits finitely many Reeb
components.

Remark 2.4.8. The induced foliation by S∗(G, h) on T 1/2 =
⋃

x∈I

δ1/2x is the annulus foli-

ation G whose boundary leaves are identified.

Note that by considering the induced foliation by S∗(G, h) on the manifold homeomor-
phic to T × I bounded by T ×{1} and T 1/2, we see that spiraling extend a given foliation
on a 2-torus with at least a circle leaf (possibly with spirals and Reeb annuli) to a foliation
of T × I where T × {1} is a torus; which was our first goal.

2.5 Foliations near torus leaves

We first prove the equivalence between trivial spiraling and turbulization (Lemma 2.5.1).
Then we prove Proposition 1.0.7.

2.5.1 Equivalence between trivial spiraling and turbulization

Lemma 2.5.1. S1(Id) is isotopic to T .

Proof. We start from a component T of turbulization, and we are going to find a torus T1

foliated by a tangent annulus and a transverse annulus, and then we can see that S1 ⊂ T
up to isotopy. So S1(Id) is isotopic to T since they foliate the same 3-manifold.

We consider I × S1 × S1 ∼= {(x, θ, z), x ∈ I, θ ∈]− π, π], z ∈ [0, 1]}/∼
where (θ, x, 1) ∼ (θ, x, 0) foliated by a T component.
Now, let z0 ∈]0, 1[, and let Lz0 be the leaf of (1, θ, z0), for θ ∈]− π, π].
Clearly, Lz0 does not depend on θ, because the foliation T with those coordinate is invari-
ant by rotation around the z-axis.
Then, there exists x0 ∈]0, 1[ such that the point (x0, θ, 1) ∈ Lz0 , by following the leaf Lz0

when z grows. Note again that x0 does not depend on θ ∈]− π, π].
Let Ah = {(x, θ, 0), x0 ≤ x ≤ 1, θ ∈]− π, π]} and Av = {(1, θ, z), θ ∈]− π, π], 0 ≤ z ≤ z0},
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Identi�cation

Figure 2.21: Generalized spiraling : S∗

as in Figure 2.22.
Then set T1 = {(x, θ, z) ∈ Lz0 , x0 ≤ x ≤ 1, z0 ≤ z ≤ 1, }

⋃
Av

⋃
Ah.

We can easily see that Av
⋃
Ah is transverse to the foliation T , and that {(x, θ, z) ∈

Lz0 , x0 ≤ x ≤ 1, z0 ≤ z ≤ 1, } is tangent to it.
Of course between T1 and the torus leaf, the non-compact leaves are all half infinite cylin-
ders, which is the case when the spiraling has no holonomy. Hence the turbulization
contains spiraling with trivial holonomy.

Another way of doing it is by applying Remark 2.4.8 for the component S∗(G, Id) =
S1(Id) when G is a circle foliation as Figure 2.23 shows it (of course in this case T 1/2

admits a circle foliation).

2.5.2 Proof of Proposition 1.0.7

Proof. Of course if F admits one of those components, F admits a torus leaf.
The converse is more interesting; it amounts to study the foliation in a neighborhood of a
torus leaf.
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Figure 2.22:

Identi�cation

Torus leaf

Figure 2.23:

The proof has two parts. First we choose a suitable neighborhood of a torus leaf
(Claim 2.5.2). Then we recognize the foliation of T 2× I as a S∗ or a T∗ component, using
a properly embedded transverse annulus in this neighborhood.

Let T be the torus leaf and consider a neighborhood of T denoted by V ∼= T × I where
T = T × {1}.
If T is compressible, by Theorem 1.0.3, the foliation in the 3-manifold that T bounds
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admits a Reeb component and so it admits a T component by Remark 2.3.6.

Thus we can assume that T is incompressible, hence T × {0} is also incompressible.
Let us choose coordinates for V .
Let W = I × (S1 × I), i.e W = {(x, (θ, z)), x ∈ I, θ ∈] − π, π], z ∈ I} foliated by annulus
leaves I × (S1 × {∗}).
V ∼= W/∼, where (0, (θ, z)) ∼ (1, h(θ, z)) and h is a foliation preserving homeomorphism
defined by F|V .
Set X = {(0, θ, z), θ ∈]− π, π], z ∈ I}.

First collapse all the T × I in V whose foliation is {T × {t}, t ∈ I}. Then we assume
(since M 6∼= T 2 × I and M 6∼= T 2 × S1 foliated by T 2 × {∗}) that all the torus leaves are
isolated (i.e for each torus leaf in V there exists a regular neighborhood of this torus leaf
not admitting another torus leaf).

Claim 2.5.2. We can choose inside T × I a regular neighborhood V ′ of a torus leaf T ′

such that V ′ ∼= T ′ × I, T ′ = T ′ × {1}, and there is no torus leaf in V̊ ′.

Proof. If there is no interior torus leaf in V we are done (choose V ′ = V ) so we can assume
that there is an interior torus leaf T1 in V and consider a thinner regular neighborhood
of T (still denoted V ) where T × {1} = T and T × {0} = T1. By continuing this process
either we find such a V ′, either this process never stops; that means that the set of torus
leaves in the leaf space of F|V is dense.
Hence we make the proof by contradiction and we suppose that such a V ′ does not exist.
We have seen above that it means that the set of torus leaves in the leaf space of F|V is
dense (between two torus leaves there always exists another torus leaf).
Recall that we can suppose that T × {0} is a torus leaf and that T × {1} = T , otherwise
the claim is true.
Consider the induced foliation by F on X. Call C the set of circles of intersection between
the torus leaves and X, and denote by Iba = {(0, 0, z), z ∈ [a, b]} for any real such that
0 ≤ a ≤ b ≤ 1. Hence C ∩ I10 is dense in I10 .
That imposes that X admits a circle foliation. Indeed, any spirals or Reeb annulus be-
tween two circle leaves contradicts the density.
Hence, there is two cases :
V is trivially foliated by torus leaves which is impossible by assumption of collapsing.
V is foliated by cylinder leaves and torus leaves.

In the latter case any cylinder leaf contradicts the density.
Indeed, up to isotopy and up to changing the coordinates, a cylinder leaf contains the
annulus A = {(x, θ, (b− a)x+ a), x ∈ I, θ ∈]− π, π]} for given a and b in I.
Hence C ∩ Iba = ∅ which contradicts the density, see Figure 2.24.

This ends the proof of Claim 2.5.2.

By Claim 2.5.2, we may assume that V does not contain interior torus leaves.
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Identi�cation

Figure 2.24: Cylinder leaf contradicts the density

If T bounds a L component (see Definition 2.8.1, and also Figure 2.34), or the folia-
tion of Q (Waldhausen manifold) pictured in Figure 2.33, then F trivially contains a T
component.
Hence we may assume that F|V is different from those two foliations.

We may recall that T × {0} is incompressible, so by a theorem proved by Roussarie
[1974] and independently by Thurston [1972] we can isotope T ×{0} such that it is every-
where transverse to the foliation or so that it is a leaf.
Hence, up to isotopy, we can assume that all the T × {t} are transverse, for t ∈ [0, 1[, and
so we can consider the 1-dimensional induced foliation on T × {0}.
Since the foliation F is C2, so is the induced foliation on T × {0}, and by a theorem of
Denjoy [1932], either the induced foliation on T ×{0} is dense (i.e all the leaves are lines);
or it admits circle leaves (and some spirals limiting to those circles, or it is a circle foliation).

In the former case since the foliation on T×{0} is by parallel lines; one of the boundary
component of X is everywhere transverse to the foliation.
Thus, there is only one circle leaf, and up to isotopy, the only C2-foliation of the annulus
with a boundary leaf and a transverse one is C (see Figure 2.4).
Since F induces this foliation on X and since the foliation on T × {0} is by parallel lines,
the induced foliation on the annuli Xx = {(x, θ, z), θ ∈] − π, π], z ∈ I}, for each x ∈ I, is
also isotopic to C (note that X = X0).
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All the foliations possible on T 2 × I are now characterized by the attachment possible
between X0 and X1. All those foliations corresponds to a T∗ component (see Figure 2.11).

The latter case where T × {0} admits at least one circle leaf, corresponds to a S1 or
a S∗ component depending on if there are circle foliation, spiral leaves or Reeb annuli.
Recall that by Lemma 2.5.1 S1(Id) is isotopic to T .
Recall also that by Remark 2.4.8 a S1 or a S∗ component can be seen as a foliation on
T 2 × I where T 2 × {0} is everywhere transverse (with circle foliation, or admitting spiral
leaves or Reeb annuli) and T 2 × {1} is a leaf (choose T 2 × {0} as T 1/2 of Remark 2.4.8).
Moreover, since V̊ does not contain torus leaves, any circle leaf of X is included in a
cylinder leaf of F|V , hence there is an infinite number of circles leaves on X.
Now given such a foliation on X and on T × {0}, the induced foliation by F on W is up
to isotopy (and changing the coordinates) the one of Figure 2.25.

Figure 2.25: Imposed foliation on W

Indeed, it admits an annulus leaf A1 = {(x, θ, 1), x ∈ [0, 1[, θ ∈] − π, π]}, X1 has the
foliation of X = X0, it admits another transverse annulus A0 = {(x, θ, 0), x ∈ [0, 1[, θ ∈
]− π, π]}, with the foliation of T × {0} split along a circle leaf that we denote by G.
Note that in Figure 2.25 we have chosen spiral leaves on G but we could have chosen
circle foliation or foliation with Reeb annuli. Moreover, in W the only possibility to follow
the foliation on those annuli is by following the projection of A0 on a sub-annulus of X0

denoted on Figure 2.25 by Y0.
Since X1 has the foliation of X0, there is a sub-annulus of X1 foliated as Y0 denoted by
Y1. Once again, the foliation of Y1 can be followed in W by following the projection of Y1
on another sub-annulus of X. By continuing this process we obtain after gluing X0 to X1

by h, a S1(f, h), or a S∗(G, h) where f is the suspension homeomorphism defining G when
G has no Reeb annuli. (Note that f = Id corresponds to a circle foliation on G).
Note that A0/∼ corresponds to T 1/2 of Remark 2.4.8.
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2.6 Proposition 2.1.1 and consequences

It is well known that Reeb’s component (and Reeb annulus) are not taut.
Brittenham [1993a], generalized this fact to manifolds with at most one boundary compo-
nent.
Here we give more details, and generalize it to manifolds with more boundary components,
if we assume that the transverse orientation is the same on each boundary component.
This is the goal of Proposition 2.1.1 proved in Subsection 2.6.1.
In Subsection 2.6.2 we will see that the hypothesis of Proposition 2.1.1 are thin by giving
interesting examples of foliations on Waldhausen manifold.
Finally in Subsection 2.6.3 we will give a partial converse of Proposition 2.1.1 which is
Theorem 2.6.8 (Goodman [1975]) and Corollary 2.6.10.

2.6.1 Proof of Proposition 2.1.1

Remark 2.6.1. Note that in an orientable manifold, if a foliation is transversely ori-
entable, then all the leaves are orientable.
However, the converse is not true : there exists a foliation of T 3 with all the leaves ori-
entable but which is not transversely orientable (see the foliation L1 in Subsection 2.8.1).
Nevertheless, this foliation is not taut and if we assume that a foliation of an orientable
manifold is taut and that all the leaves are orientable then this foliation is transversely
orientable.

Definition 2.6.2. Assume that a manifold M with non-empty boundary admits a trans-
versely orientable foliation F such that the boundary of M is a union of leaves. Then we
say that ∂M has the same transverse orientation if the transverse orientation on
those boundary leaves point all inward or point all outward.

Proposition 2.1.1 is a direct consequence of the following proposition.

Proposition 2.6.3. Let M be a 3-manifold with a transversely orientable foliation F ,
and n ∈ N.
If the boundary of M is a union of leaves

⋃

i=1...n

Ti with the same transverse orientation,

or if F contains a compact separating leaf T0, then for all i ∈ {1, ..., n}, Ti does not admit
a transverse loop or properly embedded transverse arc.

Proof. We are going to show that for every properly embedded arc γ : I → M with end-
points in a separating compact leaf or in a boundary leaf T , there exists a point of γ(I)
where the foliation is tangent to γ.

This implies the proposition, assuming first that ∂M = ∅; because any closed curve
transverse to a separating compact leaf T , intersects at least two times T , hence the closed
curve is a union of arcs with endpoints in T , in each side of T . So we will only study one
side of T with an arc which meets T only on its endpoints.
If there is only one boundary leaf, this is exactly what we want to have.
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If there are at least two compact boundary leaves, the endpoints of γ may be on two
differents boundary leaves; and since the transverse orientation is the same on those two
leaves, the following applies similarly.

Up to isotopy, we assume that the induced orientation by the non-zero continuous
vector field is a normal vector field to the leaves noted Nx for each x ∈M .
Recall that M is a Riemannian manifold, hence in the tangent space of M we can consider
the following angles.
Let h be the map :





h : γ(I)→ [0, π]

x 7→ (Tγx, Nx)

Where (Tγx, Nx) is the non-oriented angle between the tangent vector to γ in x (noted
Tγx) and the normal vector Nx.
F is transversely oriented (i.e N is nowhere zero and continuous) and γ is embedded, so
Tγ is continuous; hence, h is continuous.
Without loss of generality we can say that the transverse orientation on T is such that
h(γ(0)) > π/2. Thus, h(γ(1)) < π/2, because at γ(1) the arc gets out of T , and
Nγ(1) = Nγ(0), see Figure 2.26. Indeed, the leaves are orientable, and if there are at
least two boundary leaves we have supposed that the transverse orientation is the same.

By the Intermediate value Theorem (h is continuous), there exists
x ∈ γ(]0, 1[) such that h(x) = π/2. That means that Tγx is in the tangent plane of the
leaf passing through x, i.e γ is tangent to F in x.
Hence F cannot be taut; which ends the proof of Proposition 2.1.1.

<!/2

>!/2

F
    

"

           

     >!/2       <!/2

                                         F

  "

Figure 2.26:
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Remark 2.6.4. The above proposition similarly implies that Reeb annuli are not taut.

Remark 2.6.5. Note that the assumptions of Proposition 2.1.1 are sharp. Indeed :

(1) If there are a transverse boundary component and a tangent one, then the foliation
may be taut.
For example, the T component is taut, i.e we can find a properly embedded arc γ as
in Figure 2.7, with an endpoint on the transverse boundary torus, and the other on
the torus leaf.

(2) When there are at least two boundary leaves without the same transverse orientation,
Proposition 2.1.1 is not true.
Trivially, the foliation S×I is taut; where S is any closed surface. But the transverse
orientation on S×{0} is opposite to the one on S×{1} (one points inward and the
other outward ).

(3) The assumption of transverse orientation in Proposition 2.1.1 is necessary as sug-
gested by Lemma 2.6.6 on the Waldhausen manifold.

2.6.2 Waldhausen manifold

Lemma 2.6.6. Waldhausen manifold admits :

(1) A taut, non-transversely orientable foliation with a single torus boundary leaf, and
all the leaves are compact.

(2) A taut, non-transversely orientable foliation with a single torus boundary leaf, and
all the interior leaves are non-compact.

Proof. Recall that Waldhausen manifold Q is the twisted product of the Klein bottle with
an interval :
Q = K×̃I, where K is the Klein bottle.
Q has one torus boundary component T .
Let us represent Q as follows :
Consider W = I × S1 × I ∼= {(x, θ, z), x ∈ [0, 1], θ ∈]− π, π], z ∈ [0, 1]}.

Now Q ∼= W/∼ where (x, θ, 0) ∼ (1− x,−θ, 1).

Part (1) of Lemma 2.6.6 is easy to construct and is represented in Figure 2.27.
With the above representation, there is a Klein bottle leaf which is K = {(1/2, θ, z), θ ∈
]− π, π], z ∈ [0, 1]}/∼,
and the other compact leaves are torus leaves which are for each x ∈ [0, 1] :
Tx =

{
{(x, θ, z), θ ∈]− π, π], z ∈ [0, 1]} ∪ {(1− x, θ, z), θ ∈]− π, π], z ∈ [0, 1]}

}
/∼.

This foliation is taut, because for example γ = {(x, 0, 1/2), x ∈ [0, 1]} is a properly em-
bedded transverse arc, with both endpoints in the torus boundary leaf (see Figure 2.27).

49



2.6. PROPOSITION ?? AND CONSEQUENCES S. CAILLAT-GIBERT

ident ificat ion

Figure 2.27: Compact foliation of Q

It is non-transversely oriented since it admits a non-orientable leaf (recall that Q is ori-
entable).
Hence Part (1) of Lemma 2.6.6 is proven.

Part (2) of Lemma 2.6.6 needs more work and is the following construction.

For each z ∈ [0, 1], we setAz = {(x, θ, z), x ∈ [0, 12 ], θ ∈]−π, π]}; andA′z = {(x, θ, z), x ∈
[12 , 1], θ ∈]− π, π]}.
Consider a (clockwise) spiral foliation (see Figure 2.3) on each annulusAz∪A

′
z = {(x, θ, z), x ∈

I, θ ∈] − π, π]}. Denote the circle leaves by Cz = {(0, θ, z), θ ∈] − π, π]} and C ′z =

{(1, θ, z), θ ∈] − π, π]}. For each z ∈ I, we let C
1/2
z = {(12 , θ, z), θ ∈] − π, π]}, they are all

circles transverse to the foliation.
That induces on Az and on A′z a the foliation C (see Figure 2.4).

That gives a taut product foliation on W =
⋃

z∈I

Az ∪A′z denoted F̂ .

Now we want to use this foliation of W to obtain by identification a foliation on Q.
We may recall that Q ∼= W/∼ where (x, θ, 0) ∼ (1− x,−θ, 1).

So we only need to check that the foliation F̂ in W is preserved by the identification.
More precisely, it remains to check that any leaf of A0 is identified on any leaf of A′1 and
any leaf of A′0 is identified on any leaf of A1.
In particular that means that for each θ ∈] − π, π], the leaf of A0 at (12 , θ, 0) must be
identified on the leaf of A′1 passing at (12 ,−θ, 1).

One way to do it is as follows :
Let f be a diffeomorphism such that :
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Figure 2.28: Induced foliation on Az ∪A′z, z ∈ [0, 1].





f : A1 ∪A′1 → A0 ∪A′0

f(A1) = A′0, f(A
′
1) = A0

∀(1/2, θ, 1) ∈ C
1/2
1 , f(1/2, θ, 1) = (1/2,−θ, 0) ∈ C

1/2
0

and such that f preserves the foliation, i.e f maps a half-spiral leaf on a half-spiral leaf.
Note that the definition of f induces f(C1) = C ′0, f(C

′
1) = C0.

We can consider Q ∼= W/∼′ where ((x, θ), 1) ∼′ (f(x, θ), 0) with the induced foliation by

F̂ because this foliation is preserved by the identification.
We denote by F this new foliation on Q.
Note that this new representation of Q with ∼′ is isotopic to the first one with ∼.

F is taut, because for example γ = {(x, 0, 1/2), x ∈ I} is a properly embedded trans-
verse arc to F .

F admits a single torus boundary leaf, which is (
⋃

z∈[0,1]

Cz ∪ C ′z)/∼′ and the interior

leaves are non-compact (they all contain an embedded R× I).

The proof of Claim 2.6.7 ends the proof of Part (2) of Lemma 2.6.6.

Claim 2.6.7. F is not transversely oriented.

Proof. Let L̂ be the leaf of F̂ in W containing the arc Ĉ = {(12 , 0, z), z ∈ [0, 1]}, and

consider a regular neighborhood B̂ of Ĉ in L̂.
Set ai = ∂B̂ ∩Ai, and a′i = ∂B̂ ∩A′i.

B̂/∼′ is homeomorphic to a Mobius band since f(a1) = a′0 and f(a′1) = a0 (see Figure 2.29),
and by construction is included in a leaf of F . Since Q is oriented, F is non-transversely
oriented.
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In conclusion, F is taut, non-transversely oriented with a torus boundary leaf and with
non-compact interior leaf, as in Figure 2.29, which ends the proof of Part (2) of Lemma
2.6.6.
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Figure 2.29: Foliation F on Q

2.6.3 Partial converse: existence of torus leaf

Now we suppose that a transversely oriented foliation is non-taut and see that it admits
a torus leaf but we cannot conclude if it is separating or not, that is why it is a partial
converse to Proposition 2.1.1.

Theorem 2.6.8 (Goodman [1975]). If a leaf of a transversely orientable C1-foliation of a
closed 3-manifold does not intersect a closed transverse curve then it is a torus leaf.

Therefore, if a foliation is not taut then it admits a torus leaf.

Question 2.6.9. We may wonder if it is still true when the foliation is only supposed to
be C0.

Corollary 2.6.10. Consider a transversely oriented C1-foliation on M tangent to the
boundary (possibly ∂M = ∅), then the following assertions are true.
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(1) If a leaf does not admit a properly embedded transverse arc or transverse loop then
it is a torus.

(2) If a leaf is separating, then it is a torus leaf.

(3) If the boundary components of M are a union of leaves admitting the same transverse
orientation, then all are tori.

Proof. When ∂M 6= ∅, we consider the double of M , i.e D(M) = M
⋃

∂M

M (the union of

two copies of M with opposite orientation). Notice that any closed transverse loop passing
trough a leaf in D(M) would induce a closed transverse curve, or a properly embedded
transverse arc in M .
Now we assume that a leaf does not admit a properly embedded transverse arc or trans-
verse loop, and we apply Theorem 2.6.8 to M (or do D(M) if ∂M 6= ∅), so this leaf is a
torus, so part (1) is true.

If a separating compact surface is a leaf, then by Proposition 2.6.3, there is no trans-
verse loop passing through it, so this is a torus by part (1), so part (2) is true.

By applying Proposition 2.6.3 and part (1), we obtain part (3).

2.7 Separating compact leaf

As Theorem 2.6.8 says, a non-taut foliation admits a torus leaf. Then there are two
possibilities. This torus leaf can be separating or non-separating. The former case is
explored in this section while the latter case is the aim of Section 2.8.
Note that there are three types of non-taut foliations admitting a separating torus leaf
depending on if we can modify the foliation so that it becomes taut.

– Foliations admitting a Reeb component which can be deleted to obtain another taut
foliation (example in S2 × S1).

– Foliations admitting a Reeb component which cannot be deleted (example in S3).
– Non-taut and Reebless foliations (example among graph manifolds).

2.7.1 Non-taut foliation admitting Reeb component

Consider a non-taut foliation of a manifold M containing a Reeb component R and
denote by T = ∂R. In order to know if we can delete a neighborhood of R and replace it
by a trivially foliated solid torus D2 × S1 we need to know how R is attached in M and
how the foliation looks like in a neighborhood of T in M\R̊.
This is the aim of Lemma 2.7.1. Next we will see the opposite process which consist on
considering a taut foliation and adding Reeb component as Proposition 2.7.3 suggests it.

In the light of Proposition 1.0.7 in a neighborhood of T in M\R̊ there exists either
(generalised) spiraling component or (generalised) turbulization component, bounded by
T or bounded by a torus leaf T ′ included in a neighborhood of T in M\R̊. Hence up to
deleting the foliation of T 2 × I bounded by T and T ′ we can consider that T bounds a
(generalised) spiraling component or (generalised) turbulization component (that changes
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the foliation but not the manifold M).
We want to replace the Reeb component R by a trivially foliated solid torus, i.e foliated
by meridians disks D2 × S1. That imposes that T must bound in M\R̊ a turbulization
component T (see Figure 2.7) because all the other components do not induce a circle
foliation on the transverse boundary torus.
Moreover if the circles C of the circle foliation induced by T on the transverse torus, bound
meridian disks in R then we can delete R ∪ T and replace it by the trivially foliated solid
torus D2× S1 by gluing meridians disks on the circles C; and once again that changes the
foliation but not the manifold M .

transverses tori

A leaf

 turbulization

A Reeb component

A leafdeletion

Figure 2.30: Foliation F on Q

Note that if the circles C do not bound meridian disks in M as in Figure 2.31 we
cannot delete the Reeb component, as in the case of the Reeb foliation of S3 (foliation
obtained by gluing two Reebs components to obtain S3).
Indeed the boundary of the meridians disks of a Reeb component of S3 are longitudes for
the other boundary component.

Identi�cation by Id

Figure 2.31: Part of the Reeb foliation of S3
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Hence we have proved the following Lemma :

Lemma 2.7.1. A Reeb component R can be deleted if and only if up to deleting a T 2× I,
∂R bounds a T component in M\R̊ whose circles C of the circle foliation induced by T
on the transverse torus bound disks in T ∪R

Remark 2.7.2. Note that the Reeb foliation of S2 × S1 (foliation obtained by gluing two
Reeb components to obtain S2× S1) can be transformed by applying two times this process
and we obtain the product foliation S2×S1. Indeed that gives two solid tori trivially foliated
by disks glued along their circle boundary two obtain sphere leaves.

Proposition 2.7.3. From each transversely oriented taut foliation F on a closed 3-
manifold M , (M 6∼= S2 × S1 trivially foliated), we can construct a non-taut foliation on
M (with a Reeb component) and a non-taut foliation without Reeb component on M\V ,
where V is a solid torus.

Proof. By definition, there exists a closed transerve curve, say γ. Choose a small enough
regular neighborhood of γ, denoted V ∼= D2× S1, so that the induced foliation by F on V
is the trivial foliation D2 × S1.

Now consider M\V̊ .
By construction the foliation induced on ∂V is (∂D2)× S1.
Then we can apply the process of turbulization in (∂V ) × I by pasting a T component,
to obtain a foliation F ′ of M\V̊ with one torus boundary leaf.
Then, Proposition 2.1.1 implies that F ′ is not taut.

This process of turbulization gives a Reeb component if and only if M ∼= S2 × S1 with
the product foliation.
Indeed suppose that our construction leads to a Reeb component R, i.e M\V̊ = R so con-
tains a T component. Then M\(V̊ ∪T ) is a solid torus foliated by D2×S1, homeomorphic
to M\V̊ .
Then M is a union of two solid tori, and since V is foliated by disks, the transverse circles
leaves of T bounds disks in V and in R, so the identification of the two solid tori pastes
the boundary of the meridians disks, hence M ∼= S2 × S1.
The converse is trivial.

In conclusion, we have constructed a non-taut foliation on M\V̊ without Reeb com-
ponent. By gluing a Reeb component trivially to this torus leaf we obtain a non taut
foliation with a Reeb component on M .
Hence we have proved Proposition 2.7.3.

2.7.2 Non-taut and Reebless foliations

Foliations admitting a Reeb component are not taut, but the converse is false: there
are many non-taut and Reebless foliations.
There are two kinds of examples :
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(1) Non-taut and Reebless foliations on manifolds admitting a taut foliation;

(2) Non-taut and Reebless foliations on manifolds without taut foliations.

Many examples for Point (1) are constructed by Proposition 2.7.3.
A simple example is the following. Consider the manifold M = Sg × S1, where Sg is a
closed compact surface of genus g, for g ≥ 0, with the trivial product foliation. Note that
it is taut, so we can apply Proposition 2.7.3, and we construct a non-taut and Reebless
foliation on M\V̊ , where V is a solid torus (see next figure for the case where g = 1).
Note that by gluing two such foliations along their boundary torus leaves we obtain a
separating torus leaf in a non-taut Reebless foliation.

a leaf

a torus leaf

Identi�cation

Identi�cation

Figure 2.32: Non taut foliation on M\V̊ , when g = 1

Nevertheless, note that Q admits a non-taut, transversely orientable Reebless foliation,
it not obtained via Proposition 2.7.3. This is the one constructed by R. Roussarie [1974],
called type IIb component, and given in Figure 2.33.
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Figure 2.33: Non-taut Reebless and transversely oriented foliation on Q

Proposition 2.7.3 shows that there are a lot of non-taut, Reebless foliations, since any
taut foliation on a manifold M gives rise to a non-taut Reebless foliation (on M\V̊ , where
V is a solid torus).
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Amore interesting question is the existence of non-taut Reebless foliations in a manifold
not admitting a taut foliation, (Point (2)); i.e among homology spheres by Theorem 2.2.2.
Brittenham, Naimi, and Roberts [1997] gave examples of such foliations on graph mani-
folds.

Theorem 2.7.4 (Brittenham, Naimi, and Roberts [1997]). There exist infinitely many
manifolds without taut foliations admitting Reebless foliation (hence non-taut). Those are
graph manifolds constructed by gluing two Seifert fibered manifold, each based on the disc
with two exceptional fibers.

Question 2.7.5. There are infinitely many Seifert fibered homology spheres not admitting
a taut foliations by Theorem 1.0.11. Do they admit a non-taut Reebless foliation?

2.8 Non-separating torus leaf.

We have seen that a foliation with a separating torus leaf cannot be taut.
The case of non-separating torus leaves is very different since they can lie in a taut foliation
or in a non-taut foliation.
The goal of Section 2.8 is to understand the reason.

In this section, we first give an example of a non-taut C1-foliation admitting a non-
separating torus leaf, and then we give some constructions of taut and non-taut foliations
admitting a non-separating torus leaf.
We will see that the key point amounts to do a good spiraling (opposite direction of rota-
tion in a neighborhood of the torus leaf) to obtain a taut foliation or a bad spiraling (same
direction of rotation in a neighborhood of the torus leaf) to obtain a non-taut foliation.
Then we prove Theorem 1.0.8.
Finally we conclude by explaining that in Theorem 2.2.2, Gabai used good orientation.

2.8.1 Example of non-taut foliation on T 3

We study the well-known example of T 3 (where T 3 ∼= S1 × S1 × S1).
Here we give two examples of non-taut foliations with non-separating torus leaves on T 3.
A non-transversely oriented one (L1); and a transversely oriented one (L2).

Let us represent T 3 as follows :
Set W = {(x, θ, z), x ∈ [0, 1], θ ∈]− π, π], z ∈ [0, 1]} ∼= I × S1 × I.

Now W/∼
∼= T 2 × I where (x, θ, 0) ∼ (x, θ, 1); and T 3 is obtained by identifying the

two following torus boundary components to obtain a non- separating torus T ⊂ T 3 :
T0 = {(0, θ, z), θ ∈]− π, π], z ∈ [0, 1]}/∼ and
T1 = {(1, θ, z), θ ∈]− π, π], z ∈ [0, 1]}/∼.

Definition 2.8.1. Foliate each Az = {(x, θ, z), x ∈ [0, 1], θ ∈] − π, π]}, for z ∈ [0, 1], by
a Reeb annulus. That induces a foliation L on T × I ∼= W/∼ because this foliation is
invariant by ∼.
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In this foliation L, T0 and T1 are leaves, which implies a foliation L1 on T 3.
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(a) Foliation L of T × I.
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(b) Other representation of L (from Roussarie [1974])

Figure 2.34:

L1 is not taut, because any transverse loop passing through the torus leaf, would induce
(after isotopy and splitting) a transverse arc on Az, for some z ∈ [0, 1], with endpoints in
∂Az, which is impossible since a Reeb annulus is not taut.
Moreover, L1 is not transversely orientable because there is no way of extending continu-
ously a transverse vector field on T . Indeed, L is transversely oriented. But on each Az,
the two boundary leaves have the same orientation. Hence on W/∼

∼= T 2 × I, the two
torus boundary leaves have the same orientation (for example, in Figure 2.34, they both
point outward).
Thus, when gluing the two boundary leaves by a reversing orientation homeomorphism,
the transverse orientations cannot match.

Note that L1 does not contain any non-orientable leaf and is not transversely ori-
entable, which is the counterexample expected in Remark 2.6.1.

Now we give the second example of non-taut foliation with non-separating torus leaf,
but which is transversely oriented.

Consider the construction above, and glue with a reversing orientation homeomorphism
two copies of L, denoted by L and L∗, where we add a ∗ to all the notations when we are
in L∗. The annuli Az and A∗z are attached along their boundary, so that the transverse
orientation matches. We obtain a transversely oriented foliation L2 of T 3 (see the induced
foliation by L2 on A′z = Az ∪A∗z for some z ∈ [0, 1] on Figure 2.35).

In conclusion, L2 admits two non-separating torus leaves, is not taut and Reebless (no
leaf is homeomorphic to R2), and is transversely orientable. Hence this is the expected
foliation.
Note that by gluing together an even number of such components L, this give an infinite
number of such foliations.
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Figure 2.35: Foliation on A′z induced by L2

Note that obviously T 3 admits a taut foliation, which is the product foliation; but
we will see another interesting taut foliation constructed with good spiraling in Subsec-
tion 2.8.2, (see Figure 2.37).

2.8.2 Good orientation vs bad orientation

In this subsection we first give an example of construction where we can obtain a taut
or a non-taut foliation depending on if we do a good or a bad orientation.
Theorem 1.0.8 is a generalization of this fact, so we prove it here.

When M is a manifold with two torus boundary components, then we denote M/∂
the manifold obtained by identifying the two boundary torus components by the trivial
homeomorphism.
Let us study an interesting example : M ∼= Fg×S1/∂ where Fg is a twice punctured genus
g compact orientable surface.

When g = 0, we obtain T 3. We have already seen in Subsection 2.8.1 an interesting
Reebless, and non-taut foliation on T 3; here we will construct a taut one with non-compact
leaves.

We set M ′ = Fg × S1, with a fixed orientation and denote ∂M ′ = T− ∪ T+, (a union of
two tori).
We denote by T the non-separating torus resulting from the identification of T− and T+

in M = M ′/∂.

Consider on M ′ the product foliation F ′. That induces on T− and T+ a circle foliation.
We want T to be a torus leaf, so we are going to apply the process of turbulization (or
equivalently spiraling by Lemma 2.5.1) on T− and T+. This amounts to glue two T
components, and depending on the gluing, we can construct a taut foliation (Figure 2.38),
or a non-taut foliation (Figure 2.39) by gluing two copies of T differently on the two torus
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boundary components.
In Figure 2.36 we have fixed a transverse orientation, and we explicit the two choices of
turbulization. The key point is that the transverse orientation on the leaf attaching on
the two transverse tori is the same, since any leaf of F ′ admits one boundary component
on each transverse torus.

Identi�cation

(a)T +

Identi�cation

(b)T −

Figure 2.36:

Now we fix a transverse orientation on F ′.
We want to attach two components T + or T − on the boundary components of M ′.
Let us denote T1 and T2 the two new torus boundary components after the pastings.
There are two choices :

(1) We glue T + on one boundary component and T − on the other. That induces op-
posite transverse orientation on T1 and T2, (one points inward and the other points
outward), and so a taut transversely oriented foliation on M ′ (choose for example
the arc γ in Figure 2.38).

(2) We glue T , where T ∈ {T +, T −} on each boundary component, that induces the
same transverse orientation on T1 and T2.
This foliation is transversely oriented, so by Proposition 2.1.1 it is non-taut.

Now we identify T1 and T2.
In the first case that induces a taut foliation admitting a non-separating torus leaf on
M = Fg × S1/∂ (with non-compact leaves, but T ).

In the second case that induces a non-taut, and non-transversely oriented foliation
admitting a non-separating torus leaf on M = Fg × S1/∂.
Indeed, this foliation is not transversely oriented, because the transverse orientation on
T1 and T2 is the same, and the identification T1 and T2 reverse the orientation, so the
transverse orientation on T is not well defined.
Note that the case g = 0 is exactly the foliation of T 3 of Subsection 2.8.1 (see Figure 2.34).
Note also that by gluing trivially two copies of such a foliation along the boundary torus
leaves, we obtain a non-taut and transversely oriented foliation with two non-separating
torus leaves.

That example leads us to make the following definition :

Definition 2.8.2. Let M be a manifold with a transversely oriented foliation F such that
the boundary of M is a union of torus leaves.
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Figure 2.37: Case (1) when g = 0, i.e on T × I

torus leaftorus leaf

identification

identification
identification

Figure 2.38: Case (1) when g = 1 : taut foliation

We say that F has a bad orientation if the transverse orientation on each boundary
torus leaf is the same.
Otherwise we say that F has a good orientation.

Theorem 2.8.3. Let M be a manifold with a transversely oriented C1-foliation F .
Assume that the boundary of M is a union of two torus leaves.
Assume also that F does not admit neither interior torus leaf, nor embedded annulus whose
induced foliation by F is a Reeb annulus.
Then, F is taut if and only if F has a good orientation.
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torus leaftorus leaf

identification

identification
identification

Figure 2.39: Case (2) when g = 1 : non-taut foliation

Proof. Proposition 2.1.1 gives exactly that if F has a bad orientation then F is non-taut.
This is equivalent to say that if F is taut then F has a good orientation.
It remains to show that if F has a good orientation then F is taut. This is the goal of the
following.
Let us denote by T ′1 and T ′2 the two tori boundary leaves. Choose an embedded torus Ti in
a regular neighborhood of T ′i for i = 1, 2, and denote by N(T ′i ) the regular neighborhood
of T ′i bounded by T ′i and Ti, for i = 1, 2.
By the Theorem of Roussarie [1974] and Thurston [1972] we can assume that T1 and T2

are transverse to F .
Fix an orientation on M . Up to considering the opposite transverse orientation on F , we
can assume that the transverse orientation on T ′1 points in M and points out of M on T ′2.

If we denote by N = M\( ˚N(T ′1) ∪N(T ′2)) the oriented manifold homeomorphic to M ,
bounded by T1 and T2, and the induced foliation by F on N by G, then G does not admit
torus leaves, so by Corollary 2.6.10 it is taut.

Claim 2.8.4. There exists a properly embedded arc γ : I → N transverse to G with an
endpoint on T1 and another on T2.

Proof. Since G is taut, either we find a properly embedded transverse arc, or a closed
transverse curve to each leaf.
If there exists a properly embedded transverse arc, we note that it must have one endpoint
on T1 and another on T2. Indeed if both endpoints are on the same boundary component
then by Proposition 2.6.3, it cannot be a transverse arc.
If we find a closed transverse curve, it can be chosen so that it meets all the leaves, then
we can cut this curve in two points to obtain a transverse arc, and isotope it so that the
endpoints meet T1 and T2, and keep being transverse to G. Indeed, it suffices to pick one
leaf F1 meeting T1 and one (other) leaf F2 meeting T2, and cut the closed loop at the
points it meet Fi, i = 1, 2, and push the endpoints to the boundary of Fi, i = 1, 2 by small
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isotopies transverse to the leaves in a neighborhood of Fi, i = 1, 2. So we have proved
Claim 2.8.4.

Therefore, up to considering t→ γ(1−t), we can assume that γ(0) ∈ T1 and γ(1) ∈ T2.
Moreover we make the confusion between γ and γ(I). Let J = [0, ǫ], where ǫ > 0 is small
enough.
It remains to understand why we can extend γ in M to obtain a properly embedded arc
transverse to F .

Claim 2.8.5. If F is transversely oriented with a good orientation, the only possibilities
for G to be transverse to the Ti, i = 1, 2 are the one on Figure 2.40.

Figure 2.40: Coherent orientation

Proof. Recall that we have always assumed that M is orientable.
We can choose a small disk, denoted D ∼= γ × J in N such that for each t0 ∈ I, γ(t0)× J
is included in a leaf of G. It admits an arc α = γ(0) × J ⊂ ∂D, so α ⊂ T1 ∩ G1, where
G1 ∈ G, and an arc β = γ(1)× J ⊂ ∂D, so β ⊂ T2 ∩G2, where G2 ∈ G.
Since F is transversely oriented, so is G, and the transverse orientation of G induces an
orientation on D which must be coherent, because N is oriented.
Indeed, the transverse orientation of G1, induces an orientation on α ⊂ ∂G1, denoted ~α.
This orientation induces also an orientation on D, because α ⊂ ∂D.
Similarly, the transverse orientation of G2, induces an orientation on β ⊂ ∂G2, denoted
~β. But since D and N are oriented, the induced orientation on ∂D imposes ~β = −~α.
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Figure 2.41: Non-coherent orientation

Moreover, there are two ways of being transverse to each Ti (i = 1, 2), which gives four
possibilities. Figure 2.40 showes the two possibilities with a coherent orientation, between
the one induced on D and the one induced by ∂G1 and ∂G2.
Figure 2.41 shows the other two possibilities where the induced orientation on D by G1

is not coherent with the induced orientation on β by G2 in N ; which ends the proof of
Claim 2.8.5

Now we use Proposition 1.0.7 to understand the foliation of N(T ′i ) in M , for i = 1, 2.
Indeed, since there is no interior leaves in F , each T ′i bounds a S∗ or a T∗ component
(without embedded Reeb annulus). Hence we can easily find an extension of γ in M , as
in Figure 2.40 which ends the proof of Theorem 2.8.3.

Now we prove Theorem 1.0.8.

Proof. If there are two torus boundary leaves, then this is Theorem 2.8.3.
Otherwise, it remains to understand that for each torus leaf we can find another torus leaf
with opposite orientation (we suppose there is a good orientation). So by Theorem 2.8.3,
we find a properly embedded arc; which proves Theorem 1.0.8.

Remark 2.8.6. Note that given a manifold with a transversely oriented C1-foliation with-
out embedded Reeb annulus, and with interior torus leaves, we can split along all the torus
leaves. If we obtain a connected manifold we can apply Theorem 1.0.8 to know if it is taut.
Of course the connectedness is crucial.

Remark 2.8.7. Note that Gabai’s spiraling constructs a taut foliation with a non-separating
torus leaf, by splitting along it, and Gabai’s process imposes a good orientation by consid-
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ering the component S(f, h) with only a transverse annulus on one boundary component
and the remaining of the boundary component of S(f, h) is tangent to the foliation.

2.8.3 Link with Gabai’s construction

We have considered above a component of spiraling bounded by a torus everywhere
transverse to the foliation, and a tangent torus, even if we defined it in Section 2.4 as a
component bounded by a tangent torus and the other torus contains a transverse annulus
and a tangent annulus to the foliation.
We are going to see that the second way of seeing it imposes a good orientation, and Gabai’s
construction imposes that there is no embedded Reeb annulus, so by Theorem 1.0.8 we
construct a taut foliation.

We consider the same example as in the beginning of Subsection 2.8.2 but with a dif-
ferent construction.
Let us recall the definitions.
Let M ∼= Fg × S1/∂ where Fg is a twice punctured genus g orientable compact surface.
We set M ′ = Fg × S1, with a fixed orientation and denote ∂M ′ = T− ∪ T+, (a union of
two tori).
We denote by T the non-separating torus resulting from the identification of T− and T+

in M = M ′/∂.

Here, we do not consider the trivial product foliation on M ′.
In the construction of Gabai, the boundary components denoted by γ corresponds to what
is supposed to be transverse to the foliation, and the ones denoted by R±(γ) correspond
to what is supposed to be tangent, and γ∪R±(γ) is the whole boundary of the 3-manifold.
So we consider (M,γ), and (M ′, γ′).
Here we let R−(γ

′) = T−, and R+(γ
′) = T+, and γ = γ′ = ∅ because we want a torus leaf.

Fix an orientation on M ′ so that the orientation on T+ points out and points in on T−.
Set S1 = Fg × {θ}, where θ ∈ S1.

Identi�cation

Figure 2.42: Embbeding of S1 in M ′ for g = 1

Let us call α− = ∂S1 ∩ T−, and α+ = ∂S1 ∩ T+, see Figure 2.42.
Set M1 = M ′\S1 × I̊; where M1

∼= Fg × I, with the induced orientation by M ′;
Up to changing the notations, we can assume that the orientation of S+

1 = S1×{0} points
out of M1, and that S−1 = S1 × {1} points in M1.
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We set R+(γ1) = S+
1 ∪ (T+\(α+ × I̊)) ∼= S1

∼= Fg;
R−(γ1) = S−1 ∪ (T−\(α− × I̊)) ∼= S1

∼= Fg;
γ1 = ((S+

1 ∩ T−)× I) ∪ ((S−1 ∩ T+)× I) ∼= (S1 × I) ∪ (S1 × I).

That corresponds to the so-called hierarchy :

(M ′, γ′)
S1
 (M1, γ1)

where (M1, γ1) ∼= (Fg × I, (∂Fg)× I) and R+(γ1) ∼= Fg × {1}.

We consider the product foliation on M1 which consists on Fg×I, but which is tangent
toR−(γ1), andR+(γ1), and transverse to γ1, transversely oriented so that on the boundary,
the transverse orientation coincide with the orientation of M1, as illustrated in Figure 2.43.

a leaf

Figure 2.43: Product foliation on M1, when g = 1

By gluing back S+
1 to S−1 , that induces a foliation F on M ′ by leaves homeomorphic

to Fg
∼= S1, such that the two boundary tori are foliated as a union of a tangent annulus

and a transverse annulus (see Figure 2.44).

Note that when we glue back S+
1 to S−1 , we can still consider the part of R(γ1) which

is still on the boundary of M ′, and we will still denote it R(γ1), as we did on Figure 2.44.
Then, we can paste components of spiraling on each boundary component; to extend the
foliation on M ′ such that the two boundary tori are leaves (recall that R+(γ

′) = T+, and
R−(γ

′) = T− must be leaves); i.e we paste the foliated components S+
1 on the boundary

component containing R+(γ1) and S
−
1 on the boundary component containing R−(γ1).

Note that here we don’t have the choice of S+
1 or S−1 on each boundary component. Recall

that S+
1 is a transversely oriented foliation of T × I and S−1 is the opposite transversely

oriented foliation of T × I.
By Theorem 1.0.8 this foliation is taut.

Remark 2.8.8. This example gives an interesting foliation on M = T 3 = F0× S1/∂, (F0

is an annulus).
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identification

identification
identification

torus boundary
torus boundary

a leaf

Figure 2.44: Foliation F by compact leaves M ′, when g = 1

Indeed this is a taut, transversely oriented foliation, admitting non-compact leaves, and a
(compact) non-separating torus, shown on T 2 × I in Figures 2.45 and 2.37.

Figure 2.45: Foliation extended by spiraling on M ′, when g = 0, i.e on T × I
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Chapter 3

Existence de feuilletage tendu

3.1 Introduction

Ce chapitre fait l’objet d’un article co-écrit avec Daniel Matignon qui a été soumis
dans le journal ”Topology and its applications”, c’est pourquoi il a été rédigé en anglais.

All 3-manifolds are considered compact, connected and orientable.
Taut foliations provide deep information on 3-manifolds and their contribution in under-
standing the topology and geometry of 3-manifolds is still in progress. The first result
came from Novikov [1965], who proved that a 3-manifold which admits a taut foliation
has to have infinite π1 or S2×S1. Since then, we know by Palmeira [1978] that such man-
ifolds have R3 for universal cover, and that their fundamental group are infinite Novikov
[1965] and Gromov negatively curved when the manifold is also toroidal Calegari [2006].
Recently, Thurston has exhibited an approach with taut foliations towards the geometriza-
tion.

Gabai [1983], proved that a closed 3-manifold with a non-trivial second homology
group admits a taut foliation. A lot of great works then concern the existence of taut fo-
liations, see for examples Brittenham [1993a], [1993b] Clauss [1991], Roberts, Shareshian,
and Stein [2003].
This paper seeks to answer the question for Seifert fibered 3-manifolds. In the following,
a non-integral homology 3-sphere means a rational homology 3-sphere, which is not an
integral homology 3-sphere. The results are quite different if they are integral homology
3-spheres, or non-integral homology 3-spheres.

Theorem 1.0.10 [english version] Let M be a Seifert fibered integral homology 3-sphere.
Then M admits a taut analytic foliation if and only if M is homeomorphic to neither the
3-sphere nor the Poincaré sphere.

Concerning non-integral homology 3-spheres, the non-existence is not isolated. Of
course, the 3-sphere and lens spaces do not admit a taut foliation, but for any choice of
the number of exceptional slopes, there exist infinitely many which admit a taut foliation,
and infinitely many which do not.
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Theorem 1.0.11 [english version] Let n ∈ N.
Let Sn be the set of Seifert fibered 3-manifolds whith n exceptional fibers, which are non-
integral homology 3-spheres. For each n ≥ 3 :

(i) There exist infinitely many Seifert fibered manifolds in Sn which admit a taut an-
alytic foliation; and

(ii) There exist infinitely many Seifert fibered manifolds in Sn which do not admit a
taut C2-foliation.

(iii) There exist infinitely many Seifert fibered manifolds in S3 which do not admit a
taut C0-foliation.

Actually, by considering the normalized Seifert invariant (0; b0, b1/a1, . . . , bn/an) of
a Seifert fibered homology 3-sphere, and assuming that b0 6= −1 (nor 1 − n), then b0
determines wether M does or does not admit a taut C2-foliation, see Theorem 3.4.1, which
collects results in Eisenbud, Hirsch, and Neumann [1981], Jankins and Neumann [1985],
Naimi [1994]. Note that there is a fiber-preserving homeomorphism of M which switches
b0 = 1 − n to b0 = −1. Therefore, the problem remains open only for b0 = −1. We
will prove (see Theorem 3.7.1) that even if the 3-manifolds all are equipped with b0 = −1,
Theorem 1.0.11 is still true. To prove the non-existence of taut C2-foliations, we first prove
that a taut C2-foliation can be isotoped to a horizontal one, and then use a characterization
of horizontal foliations for Seifert fibered homology 3-spheres (see below for more details :
schedule of the paper). So, the following result play a key role in the proof.

Theorem 3.1.1. Let M be a Seifert fibered rational homology 3-sphere. Let n be the
number of exceptional fibers of M . If n > 3 (resp. n = 3) then any taut C2-foliation (resp.
C0-foliation) of M can be isotoped to be a horizontal foliation.

Moreover, we will show that the geometries do not determine the existence of taut
foliations on Seifert fibered rational homology 3-spheres.

Theorem 3.1.2. Let M be a Seifert fibered rational homology 3-sphere. If M does not
admit the S̃L2(R)-geometry, then M does not admit a taut C2-foliation.

Remark 3.1.3. There exist infinitely many such manifolds (see Section 7) but the converse
is not true as says Theorem 3.7.1 : we can give infinitely many such manifolds, which
admit the S̃L2(R)-geometry (and with b0 = −1) but no taut C2-foliation.

Theorem 3.1.4. Let M be a Seifert fibered integral homology 3-sphere. If M admits
the S̃L2(R)-geometry, then M is neither homeomorphic to the 3-sphere nor the Poincaré
sphere.

In particular (Theorem 1.0.10) M admits a taut analytic foliation.

Since a remark given by Tye Lidman, another proof of Theorem 1.0.10 is possible, even
if it is much less direct. Indeed it is contained in the union of five important papers on
Heegaard-Floer homology.
First, Jankins and Neumann [1985], Naimi [1994] and Lisca and Matić [2004] show that a
Seifert fibered homology 3-sphere not admitting a taut foliation does not admit a trans-
verse contact structure.
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Then, Lisca and Stipsicz [2007] show that such manifolds are L-spaces.
Moreover, integral homology 3-spheres which are L-spaces have Heegaard-Floer homology
isomorphic to Z.
Recently the paper of Eftekhary [2009] (posted on Arxiv) proves that the only Seifert
fibered homology 3-spheres with Heegaard-Floer homology group equal to Z are S3 and
Poincaré homology 3-sphere; which implies our result.

Schedule of the paper. We organize the paper as follows.

In Section 2, we recall basic definitions and notations on Seifert fibered 3-manifolds, taut
or horizontal foliations and well-known results.

Section 3 is devoted to the proof of Theorem 3.1.1, which is based on Proposition 2.1.1,
which claims that a transversely oriented and taut foliation of a closed 3-manifold cannot
contain a separating compact leaf. Then, a taut C2-foliation of a Seifert fibered homology
3-sphere cannot contain a compact leaf (see Corollary 3.3.3). Therefore, it can be isotoped
to be horizontal (see Theorem 3.3.4), by collecting the works on foliations of Brittenham
[1993b], Eisenbud, Hirsch, and Neumann [1981], Levitt [1978], Matsumoto [1985], Novikov
[1965], Thurston [1972].

Since a horizontal foliation is clearly a taut foliation, an immediate consequence is that
a Seifert fibered rational homology 3-sphere, M say, admits a taut C2-foliation if and only
if M admits a horizontal foliation (Corollary 3.3.1). This corollary was also proved by
combining results of Eliashberg and Thurston [1998], Jankins and Neumann [1985], Lisca
and Matić [2004], Lisca and Stipsicz [2007], Naimi [1994], Ozsváth and Szabó [2004] (for
more details, see the end of Section 3).

The goal of Section 4 is a characterization of Seifert fibered rational homology 3-
spheres, which admit a taut C2-foliation. Since a taut C2-foliation can be isotoped to be
horizontal, we use the characterization of Jankins and Neumann [1985], Naimi [1994] for
horizontal foliations (for more details, see Section 4). This characterization gives rise to
criteria to be satisfied by the Seifert invariants.

Section 5 concerns the geometries of homology 3-spheres. We will prove the following
result.

Proposition 3.1.5. Let M be a Seifert fibered rational homology 3-sphere, with n excep-
tional fibers. If M does not admit the S̃L2(R)-geometry, then the following statements all
are satisfied.

(i) n ≤ 4.
(ii) If n = 4 then M admits the N il-geometry, and is a non-integral homology 3-sphere.
(iii) If M is an integral homology 3-sphere, then M admits the S3-geometry and is

either homeomorphic to the 3-sphere or to the Poincaré sphere.

We may note that if n = 2 then M is a lens space (including S3 and S1 × S2).

We combine Proposition 3.1.5 with the criteria given by the characterization of Sec-
tion 4, to prove Theorem 3.1.2.
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Section 6, 7 and 8 are devoted respectively to the proof of Theorem 3.1.2, Theorem 3.7.1
and Theorem 1.0.10.

To prove Theorem 3.7.1, we first exhibit infinite families of Seifert fibered non-integral
homology spheres, which admit the S̃L2(R)-geometry (and b0 = 1). Then, we prove that
they do satisfy (or do not satisfy) the criteria of the characterization described in Section 4.

To prove Theorem 1.0.10, we need to study more deeply these criteria.

Perspectives.

ByWaldhausen [1967], we know that an incompressible compact surface in a Seifert fibered
3-manifold (not necessarily a homology 3-sphere) can be isotoped to be either horizontal
or vertical. This is clearly not the same for foliations.

A vertical leaf is homeomorphic to either a 2-cylinder (S1 ×R) or a 2-torus (S1 × S1).
Therefore, taut foliations are not necessary isotopic to vertical ones; and vice-versa, vertical
foliations are not necessary isotopic to taut foliations, e.g. cylinders which wrap around
two tori in a turbulization way; for more details, see chapter 2. But clearly, horizontal
foliations are taut.

By Theorem 3.3.4, a taut C2-foliation can be isotoped to a horizontal foliation, if there
is no compact leaf.

We wonder if a taut C0-foliation, without compact leaf, of a Seifert fibered 3-manifold
can be isotoped to be horizontal and so analytic. By Brittenham, Naimi, and Roberts
[1997], there exist manifolds which admit taut C0-foliation but not taut C2-foliation. More-
over, Rosenberg and Thurston [1973] have given an example of C0-foliation which cannot
be C0-approximated by a C2-foliation.
Therefore, that seems impossible in general, but the question is still open for homology
3-spheres.

Question 3.1.6. Let F be a taut C0-foliation, without compact leaf, of a Seifert fibered
homology 3-sphere. Can F be isotoped to be horizontal ?

Brittenham [1993b], answers the question when the base is S2 with 3 exceptional fibers,
see Remark 3.3.5 for more details.

Gluing Seifert fibered 3-manifolds with boundary components along some of them (or
all) give graph manifolds. We wonder if we can classify graph manifolds without taut
foliations, with their Seifert fibered pieces and gluing homeomorphims.

Question 3.1.7. Let M be a graph 3-manifold. What kind of obstructions are there for
M not to admit a taut foliation ?

3.2 Preliminaries

We may recall here, that all 3-manifolds are considered compact, connected and ori-
entable. This section is devoted to recalling basic definitions and notations on Seifert
fibered 3-manifolds, taut or horizontal foliations and well-known results.

Notations Let M be a 3-manifold. If M is an integral homology sphere, resp. a rational
homology sphere, we say that M is a ZHS, resp. a QHS. Clearly, a ZHS is a QHS. If M
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is a ZHS, resp. a QHS, and a Seifert fibered 3-manifold, we say that M is a ZHS, resp. a
QHS, Seifert fibered 3-manifold.

Separating surfaces and non-separating surfaces. A properly embedded surface F
in a 3-manifold M is said to be a separating surface if M −F is not connected; otherwise,
F is said to be a non-separating surface in M . If F is a separating surface, we call the
sides of F the connected components of M − F . Note that if M is a QHS manifold, then
M does not contain any non-separating surfaces.

A 3-manifold is said to be reducible if M contains an essential 2-sphere, i.e. a 2-sphere
which does not bound any 3-ball in M . Then, either M is homeomorphic to S1 × S2, or
M is a non-trivial connected sum. If M is not a reducible 3-manifold, we say that M is
an irreducible 3-manifold. We may note that all Seifert fibered 3-manifolds but S1 × S2

and RP 3#RP 3 are irreducible 3-manifolds.

Seifert fibered 3-manifolds. We can find the first definition of Seifert fibered 3-
manifolds, called fibered spaces in Seifert and Threlfall [1980]. We first consider fibered
solid tori.

The standard solid torus V is said to be p/q-fibered, if V is foliated by circles, such
that the core is a leaf, and all the other leaves are circles isotopic to the (p, q)-torus knot
(i.e. they run p times in the meridional direction and q times in the longitudinal direction)
where q 6= 0. A solid torus W is S1-fibered if W is foliated by circles, such that there exists
a homeomorphism between W and the p/q-fibered standard solid torus V , which preserves
the leaves. We may say that W is a p/q-fibered solid torus.

A 3-manifold M is said to be a Seifert fibered 3-manifold, or a Seifert fiber space if M
is a disjoint union of simple circles, called the fibers, such that the regular neighborhood
of each fiber is a S1-fibered solid torus. Let W be a p/q-fibered solid torus. If q = 1, we
say that its core is a regular fiber; otherwise we say that its core is an exceptional fiber
and q is the multiplicity of the exceptional fiber.

By Epstein [1972] this is equivalent to saying that M is a S1-bundle over a 2-orbifold.

Seifert invariants. Seifert [1933], developed numerical invariants, which give a complete
classification of Seifert fibered 3-manifolds. Let M be a closed Seifert manifold based on
an orientable surface of genus g, with n exceptional fibers. Let V1, . . . , Vn be the solid tori,
which are regular neighborhood of each exceptional fiber. We do not need to consider non-
orientable base surface here. If we remove these solid tori, we obtain a trivial S1-bundle
over a genus g compact surface, whose boundary is a union of 2-tori T1, . . . , Tn; where
Ti = ∂Vi, for i ∈ {1, . . . , n}. Gluing back V1, . . . , Vn consists to assign to each of them a
slope bi/ai : we glue Vi along Ti, such that the slope bi/ai on Vi bounds a meridian disk
of Vi. Formally, if f and s represent respectively a fiber and a section on Ti, then the
boundary of the meridian disk of Vi is attached along the slope represented by ai[s]+ bi[f ]
in H1(Ti,Z).

Clearly, ai ≥ 2 is the multiplicity of the core of Vi, and bi depends on the choice
of a section. Removing the regular neighborhood of a regular fiber, we obtain an in-
teger slope b0. Then, g, b0, b1/a1, . . . , bn/an completely describe M . We denote M by
M(g; b0, b1/a1, . . . , bn/an), which is called the Seifert invariant.

Seifert normalized invariant and convention. New sections are obtained by Dehn
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twistings along the fiber (along annuli or tori); therefore a new section does not change bi
modulo ai. Thus, we can fix b0 so that 0 < bi < ai for i ∈ {1, . . . , n}.

That gives rise to the Seifert normalized invariant : M(g; b0, b1/a1, . . . , bn/an); i.e.
0 < bi < ai for i ∈ {1, . . . , n}.

Seifert [1933] showed that M(g; b0, b1/a1, . . . , bn/an) is fiber-preserving homeomorphic
to −M(g;−n − b0, 1 − b1/a1, . . . , 1 − bn/an) where −M denotes M with the opposite
orientation. In all the following, we denote by Φ this isomorphism. Therefore, we may
assume that b0 < 0 otherwise we switch for −n − b0. For more details, see Seifert [1933]
or Brittenham, Naimi, and Roberts [1997], Hatcher.

Every QHS Seifert fibered 3-manifold M is based on S2. Indeed, every non-separating
curve on the base surface induces a non-separating torus in M ; which cannot be in a QHS.
Hence, the base surface of a QHS Seifert fibered 3-manifold is a 2-sphere.

From now on, we denote for convenience such M by M(−b0, b1/a1, . . . , bn/an), where
b0 > 0 and 0 < bi < ai for i ∈ {1, . . . , n}. We will write :

M = M(−b0, b1/a1, . . . , bn/an).

Euler number. When M has a unique fibration, we denote by e(M) the Euler number of
its fibration. Note that few Seifert 3-manifolds (lens spaces and a finite number of others)
do not have a unique fibration, see the web book of Hatcher for more details; all of them
but lens spaces and S3, are not homology 3-spheres.

e(M) = −b0 +
n∑

i=1

bi/ai.

Taut foliations. Let M be a 3-manifold and F a foliation of M . A simple closed curve γ
(respectively, a properly embedded simple arc, when ∂M 6= ∅) is called a transverse loop
(respectively a transverse arc) if γ is transverse to F , i.e. γ is transverse to every leaf
F ∈ F , such that γ ∩ F 6= ∅.

We say that a foliation F is taut, if for every leaf of F of F , there exists a transverse
loop, or a transverse arc if ∂M 6= ∅, γ say, such that γ ∩ F 6= ∅.

We end this part by the famous theorem of Gabai [1983] on the existence of taut
foliations, which is stated here for closed 3-manifolds.

Theorem 3.2.1 (Gabai [1983]). Let M be a closed 3-manifold. If H2(M ;Q) is non-trivial
then M admits a taut foliation.

Horizontal and vertical foliations. Let M be a Seifert fibered 3-manifold and F a
foliation of M . We say that F is horizontal if each S1-fiber is a transverse loop to F . We
say that F is vertical if each leaf of F is S1-fibered, i.e. a disjoint union of S1-fibers.

Note that only Seifert fibered 3-manifolds are concerned by horizontal or vertical fo-
liations. Horizontal foliations are sometimes just called transverse foliations to underline
the fact that horizontal foliations are transverse to the S1-fibers.

Clearly, horizontal foliations are taut, because any transverse fiber (meeting a leaf) is
the required transverse loop; so we have the following result.

Lemma 3.2.2. A horizontal foliation is taut.
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3.3 Horizontal and taut C2-foliations

This section is devoted to the proof of Theorem 3.1.1; then with Lemma 3.2.2, we
obtain :

Corollary 3.3.1. Let M be a QHS Seifert fibered 3-manifold. Let n be the number of
exceptional fibers of M . If n > 3 (resp. n = 3) then, M admits a horizontal foliation if
and only if M admits a taut C2-foliation (resp. a C0-foliation).

There exists an alternative proof (but not direct) of this corollary; see at the end of
this section.

Proof of Theorem 3.1.1.

In the light of known results on foliations Brittenham [1993b], Eisenbud, Hirsch, and Neu-
mann [1981], Levitt [1978], Matsumoto [1985], Novikov [1965], Thurston [1972] of (where
Theorem 3.3.4 is their collection) it is sufficient to see that any taut foliation on a QHS
Seifert fibered 3-manifold, has no compact leaf. Then the result follows by Corollary 3.3.3,
which claims that no leaf in a taut foliation of a QHS can be compact.

Corollary 3.3.3 is an immediate consequence of Proposition 3.3.2, which concerns all
(compact, oriented and connected) closed 3-manifolds. Proposition 3.3.2 is a particular
case of Proposition 2.1.1.

Recall that a taut foliation F is said to be transversely oriented if there exists a one-
dimensional oriented foliation G transverse to F . This is equivalent to say that the normal
vector field to the tangent planes to the leaves of F is continuous (and nowhere vanishes).

Proposition 3.3.2. A transversely oriented and taut foliation of a closed 3-manifold,
cannot contain a compact separating leaf.

For example, foliations of 3-manifolds which admit a Reeb component are not taut.

We ask if taut foliations are transversely oriented, and vice-versa. In fact, there exist
taut foliations which are not transversely oriented, see chapter 2 for more details. The
inverse is easy to construct, e.g a Reeb’s component. We may note that there also exist
foliations without non-orientable compact leaves, which are neither taut nor transversely
oriented.
Here, we consider QHS, hence any foliation cannot contain a non-separating surface, and
Proposition 3.3.2, implies there is no separating surface, hence we have the following
corollary:

Corollary 3.3.3. A transversely oriented and taut foliation of a QHS cannot admit a
compact leaf.

Theorem 3.3.4 ( Brittenham [1993b], Eisenbud, Hirsch, and Neumann [1981], Levitt
[1978], Matsumoto [1985], Novikov [1965], Thurston [1972]). Let M be a QHS Seifert
fibered 3-manifold, with n exeptional exceptional fibers (where n ≥ 3). We assume that M
admits a taut C0-foliation F . Moreover, if n > 3, we suppose that F is a C2-foliation of
M .

If F does not have a compact leaf, then F can be isotoped to be a horizontal foliation.
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Remark 3.3.5 (History on Theorem 3.3.4). This theorem has been proved for all Seifert
3-manifolds which are not trivial bundles over the 2-torus. This is a collection of results
as follows.
The case of circle bundles over orientable surface, which is not a 2-torus is due to Thurston
[1972]; it has been completed and extended to non-orientable base surface by Levitt [1978].
Eisenbud, Hirsch, and Neumann [1981], generalized it to Seifert fibered spaces, where the
base surface is neither S2, nor the 2-torus with trivial circle bundle.
Later, Matsumoto [1985], focused on the case when the base is S2 with stricly more than
3 exceptional fibers.
Until then, the condition of Cr-foliation is necessary, and implies a Cr-isotopy, for each
r ≥ 2.
The last case (the base is S2 with 3 exceptional fibers) was solved by Brittenham [1993b],
and the involved techniques are very different, so the author obtained a C0-isotopy from a
C0-foliation.
We recall that when there are one or two exceptional fibers with base S2, there is no
foliation without compact leaf by Novikov [1965].

Alternative proof of Corollary 3.3.1

A proof of Corollary 3.3.1 has been obtained by combining the results of Eliashberg and
Thurston [1998], Jankins and Neumann [1985], Lisca and Matić [2004], Lisca and Stipsicz
[2007], Naimi [1994], and, Ozsváth and Szabó [2004], in the following way.

Theorem 3.3.6. Eliashberg and Thurston [1998], Jankins and Neumann [1985], Lisca
and Matić [2004], Lisca and Stipsicz [2007], Naimi [1994], Ozsváth and Szabó [2004]] Let
M be a rational Seifert fibered homology 3-sphere. The following statements are equivalent :

(1) M is an L-space;
(2) M does not carry a transverse contact structure;
(3) M does not admit a transverse foliation;
(4) M does not admit a transversely oriented taut foliation.

This theorem is a formulation of Theorem 1.1 of Lisca and Stipsicz [2007]. The proof
is mainly organized as follows.

(1)⇒ (2) : Ozsváth and Szabó [2004];

(2)⇒ (3) : Eliashberg and Thurston [1998];

(1)⇒ (4) : Ozsváth and Szabó [2004];

(4)⇒ (3) : trivial;

(3)⇒ (2) : Jankins and Neumann [1985], Lisca and Matić [2004], and Naimi [1994];

(2)⇒ (1) : Lisca and Stipsicz [2007].

To have (3)⇒ (4), we need to follow : (3)⇒ (2)⇒ (1)⇒ (4).

We may underline that the considered taut foliations are actually C2-foliations, because
using contact structure (see Eliashberg and Thurston [1998]). Note that there exists a
taut C0-foliation which is not a taut C2-foliation in the article of Brittenham, Naimi, and
Roberts [1997].
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3.4 Characterization of taut C2-foliations

The goal of this section is to give a characterization of the existence of a taut C2-
foliation in a QHS Seifert fibered 3-manifold. For this, we define the following Property (∗).

Property (∗)





(i)
b1
a1

<
m− α

m

(ii)
b2
a2

<
α

m

(iii)
bi
ai

<
1

m
, for i ∈ {3, . . . , n}

We say that m and α satisfy Property (∗) for b1/a1, b2/a2, . . . , bn/an, if all the following
statements are satisfied :

- m and α are two positive integers such that α < m;
- n ≥ 3 is an integer;
- ai and bj are positive integers for all (i, j) ∈ {1, . . . , n}2, such that :

b1/a1 ≥ b2/a2 ≥ · · · ≥ bn/an;
- (i), (ii) and (iii) of Property (∗) all are satisfied.

When there is no confusion for the bi/ai’s, we say for short that (m,α) satisfies Property
(∗), or that the integers α and m satisfy Property (∗).

For convenience, in the following, we denote by (i), (ii) and (iii) respectively, the in-
equalities (i), (ii) and (iii) of Property (∗) above.

Let M be a Seifert fibered 3-manifold. In the following, we use the previous notations
(see Section 2) of Seifert normalized invariant :

M = M(−b0, b1/a1, . . . , bn/an)

where ai and bj are positive integers for all (i, j) ∈ {1, . . . , n} × {0, . . . , n}, such that
0 < bi < ai. Note that the notations M = M(−b0, b1/a1, . . . , bn/an) suppose that M
contains exactly n exceptional fibers :

ai ≥ 2, for all i ∈ {1, 2, . . . , n}.

If b0 6∈ {1, n − 1} then the existence of a taut C2-foliation depends uniquely of b0, as
suggests the following theorem.

Theorem 3.4.1 (Eisenbud, Hirsch, and Neumann [1981], Jankins and Neumann [1985],
Naimi [1994]). Let n be an integer and M be a Seifert manifold based on S2.
We assume that n ≥ 3 and that M = M(−b0, b1/a1, . . . , bn/an), where ai and bj are
positive integers for all (i, j) ∈ {1, . . . , n} × {0, . . . , n}. Then, all the following statements
are satisfied.

(1) If 2 ≤ b0 ≤ n− 2 then M admits a horizontal foliation.

(2) If M admits a horizontal foliation then 1 ≤ b0 ≤ n− 1.

(3) If M admits a horizontal C0-foliation, then M admits a horizontal analytic foliation.
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Corollary 3.4.2. Let n be an integer and M be a Seifert manifold based on S2.
We assume that n ≥ 3 and that M = M(−b0, b1/a1, . . . , bn/an), where ai and bj are
positive integers for all (i, j) ∈ {1, . . . , n} × {0, . . . , n}, and b0 6∈ {1, n− 1}.
Then M admits an analytic horizontal foliation if and only if 2 ≤ b0 ≤ n− 2.

Therefore, the problem reduces to the case b0 = 1; we may recall here (see Section 2) :

M(−1, b1/a1, . . . , bn/an) ∼= −M(−(n− 1), 1− b1/a1, . . . , 1− bn/an).

The following theorem is a consequence of Corollary 3.3.1 and the characterization of
the existence of horizontal foliations in Seifert-fibered spaces based on S2, whose formula-
tion can be found in Brittenham, Naimi, and Roberts [1997][Proposition 6].

Theorem 3.4.3. Let n > 2 be an integer and M = M(−1, b1/a1, . . . , bn/an) be a QHS
Seifert fibered 3-manifold; where ai and bj are positive integers for all (i, j) ∈ {1, . . . , n}2.

Assume that b1/a1 ≥ b2/a2 ≥ · · · ≥ bn/an.

If n > 3 (resp. n = 3) then, M admits a taut C2-foliation (resp. a taut C0-foliation)
if and only if there exist two positive integers m and α such that (m,α) satisfies Property
(∗).

We may recall that P denotes the Poincaré ZHS, i.e. P = M(−1, 1/2, 1/3, 1/5). Note
that Theorem 3.4.3 implies that P cannot admit a taut foliation, but this fact was already
known by Theorem 1.0.3 (because its π1 is finite). Note also that if n ∈ {1, 2} then M has
to be S3 or a lens space, which cannot admit a taut foliation.
Theorem 3.4.3 has the following corollaries, which will be useful for the next sections.

Corollary 3.4.4. Let n be an integer and M be a QHS Seifert fibered 3-manifold.
We assume that n ≥ 3 and that M = M(−1, b1/a1, . . . , bn/an), where ai and bj are positive
integers for all (i, j) ∈ {1, . . . , n}2.

We order the rational coefficients bi/ai such that : b1/a1 ≥ b2/a2 ≥ · · · ≥ bn/an.

If for all i ∈ {1, . . . , n},
bi
ai

<
1

2
then M admits a taut C2-foliation.

Proof. With the notations and assumptions of the theorem, if bi/ai < 1/2, for all i ∈
{1, . . . , n}, then Property (∗) is satisfied, by choosing m = 2 and α = 1.

Corollary 3.4.5. Let n be an integer and M be a QHS Seifert fibered 3-manifold.
We assume that n ≥ 3 and that M = M(−1, b1/a1, . . . , bn/an), where ai and bj are positive
integers for all (i, j) ∈ {1, . . . , n}2.

We order the rational coefficients bi/ai such that : b1/a1 ≥ b2/a2 ≥ · · · ≥ bn/an.

If M admits a taut C2-foliation and
b1
a1
≥ 1/2, then the two following properties are

both satisfied.

(1)
bi
ai

<
1

2
, for all i ≥ 2.

(2)
bn
an

<
1

3
. In particular, an ≥ 4.
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Proof. With the notations and assumptions of Theorem 3.4.3, if M admits a taut C2-
foliation then we can find positive integers m,α such that α < m and Property (∗) is
satisfied.

First, note that if m = 2 then α = 1 and b1/a1 < 1/2, which is a contradiction to the
hypothesis. Thus, m ≥ 3.

Now, if
m− α

m
>

1

2
then

α

m
<

1

2
, hence Property (∗) implies

bi
ai

<
1

2
for i ∈ {2, . . . , n}

which proves (1).

Finally, assume that
b1
a1
≥

1

2
≥

b2
a2
≥

b3
a3
≥

1

3
. Then b3/a3 ≥ 1/m for all m ≥ 3, so

(iii) of (∗) cannot be satisfied.

3.5 Geometry

The goal of this section is to recall general results on the geometries of Seifert fibered
homology 3-spheres, and prove Proposition 3.1.5.

Let n be a positive integer and M = M(−b0, b1/a1, . . . , bn/an) be a QHS Seifert fibered
3-manifold. Recall that e(M) denotes the Euler number of M , see Section 3.2. The
following lemma is a well-known result that we detail here.

Lemma 3.5.1. Let M = M(−b0, b1/a1, . . . , bn/an) be a Seifert fibered 3-manifold. Then :

(1) M is a ZHS if and only if a1a2 . . . ane(M) = ε, where ε ∈ {−1,+1};

(2) M is a QHS if and only if e(M) 6= 0.

Proof. We may recall that:

e(M) = −b0 +
n∑

i=1

bi
ai

We follow the book of Saveliev [2002], and give more details.
Using Poincaré duality, it suffices to study when H1(M,Q) = {0}.

Start with the classical presentation of the fundamental group of a Seifert-fibered
manifold based on S2 noted M = M(−b0, b1/a1, ..., bn/an) :

π1(M) =< q1, q2..., qn, h/ qih = hqi, q
ai
i = h−bi , i = 1...n, q1q2...qn = h−b0 >

H1(M,Q) is the abelianization of π1(M), hence we can write it as a Q-vector subspace of
Qn+1:

H1(M,Q) = vect < q1, q2..., qn, h >

with the following relations :
aiqi = −bih, for i = 1...n, and q1 + q2 + ...qn = −b0h.

Let ϕ : Qn+1 → H1(M,Q) be the linear map sending the canonical base of Qn+1, noted
(e1, e2, ..., en+1), on (q1, q2, ..., qn, h).
ϕ is surjective by construction.
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Let v = (1, 1, ..., 1, b0), and vi = (0, 0..., 0, ai, 0, ..., 0, bi) ∈ Zn+1 for i = 1...n, where ai is
the ith coordinate of vi.

We can easily see that ker(ϕ) = vect(v, v1, ..., vn), with the relations above.
Thus H1(M,Q) ∼= Qn+1/ker(ϕ).

Therefore, we can see that ker(ϕ) = Im(A) where A is the endomorphism of Qn+1

defined by the following matrix still noted A :

A =




a1 0 ... 0 1
0 a2 ... 0 1
... ... ... 0 1
0 ... 0 an 1
b1 b2 ... bn b0




Hence we have :
H1(M,Q) = 0⇔ Im(A) = Qn+1 ⇔ A is bijective ⇔ det(A) 6= 0.
Furthermore det(A) can be easily calculated by developing along bi’s line.
We find:

det(A) = b0

n∏

i=1

ai −
n∑

i=1

biâi

where âi =
a1a2...an

ai
∈ Z for i = 1...n.

In conclusion we see that M is a QHS if and only if

det(A) = b0

n∏

i=1

ai −
n∑

i=1

biâi 6= 0

which is equivalent to the inequality announced.

The particular case of ZHS can be studied similarly, but instead of working in a vector
space, we work in a Z-module, and what we have used before is still true in a (free and
finitely generated) Z-module because all coefficients of A are integers. Hence we have:
H1(M,Z) = 0⇔ Im(A) = Zn+1 ⇔ A is bijective ⇔ det(A) = ±1
because now det(A) needs to be invertible in Z.
In conclusion M is a ZHS if and only if

det(A) = b0

n∏

i=1

ai −
n∑

i=1

biâi = ±1

which is equivalent to the identity announced.

Remark 3.5.2. Note that (1) implies that the ai’s are pairwise relatively prime integers,
therefore they are different.
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Then, we define the rational number χM as follows.

χM = 2−
n∑

i=1

(1−
1

ai
) = 2− n+

n∑

i=1

1

ai
.

We have the following well-known result (which can be found in the paper of Scott [1983]
for example).

Proposition 3.5.3. Let n be a positive integer and M = M(−b0, b1/a1, . . . , bn/an) be a
QHS Seifert fibered 3-manifold, then the following properties all are satisfied.

(i) χM > 0⇔ M admits the S3-geometry.

(ii) χM < 0⇔ M admits the S̃L2(R)-geometry.
(iii) χM = 0⇔ M admits the N il-geometry.

Proposition 3.5.4. Let n be a positive integer and M = M(−b0, b1/a1, . . . , bn/an) be a

QHS Seifert fibered 3-manifold. If M does not admit the S̃L2(R)-geometry then n ≤ 4.

Furthermore, if n = 4 then M = M(−b0, 1/2, 1/2, 1/2, 1/2) with b0 6= 2; so M admits
the N il-geometry and is a non-integral QHS.

Proof. Let n be a positive integer and M = M(−b0, b1/a1, . . . , bn/an) be a QHS. Assume

that M does not admit the S̃L2(R)-geometry. Then, by Proposition 3.5.3, χM ≥ 0. There-

fore, n− 2 ≤
n∑

i=1

1

ai
.

Since, ai ≥ 2 for all i ∈ {1, . . . , n}, n− 2 ≤
n∑

i=1

1

ai
≤ n/2⇒ n ≤ 4.

Now, assume first that n = 4. Then,
4∑

i=1

1

ai
≥ 2. On the other hand, ai ≥ 2 for all

i ∈ {1, . . . , 4}, then
4∑

i=1

1

ai
≤ 2, and if one ai > 2 then

4∑

i=1

1

ai
< 2.

Therefore, ai = 2 for all i ∈ {1, . . . , 4}. Thus, χM = 0 which means that M admits the
N il-geometry. Moreover, Lemma 3.5.1 (2) implies that b0 6= 2. Note that such M cannot
be a ZHS, by Remark 3.5.2.

Corollary 3.5.5. Let M be a ZHS Seifert fibered 3-manifold. Then, M has the S̃L2(R)-
geometry or the S3-geometry.

Furthermore, if M has the S3-geometry, then M is either homeomorphic to S3 or to
the Poincaré sphere P.

Proof. Let M be a ZHS Seifert fibered 3-manifold. Assume that M does not have the
S̃L2(R)-geometry. Note that if n ≤ 2 then M has to be homeomorphic to S3. By Propo-
sition 3.5.4, we may assume that n = 3 and that a3 > a2 > a1 ≥ 2 (by remark 3.5.2).

Since χM ≥ 0,
3∑

i=1

1

ai
≥ 1. If a1 ≥ 3, then

3∑

i=1

1

ai
≤ 1/3 + 1/4 + 1/5 < 1, which

is a contradiction. Then a1 = 2. If a2 6= 3 then a2 ≥ 5 by remark 3.5.2. Hence,
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3∑

i=1

1

ai
≤ 1/2 + 1/5 + 1/7 < 1, which is a contradiction. Therefore, a1 = 2 and a2 = 3.

Similarly a3 = 5. Since n = 3 and (a1, a2, a3) = (2, 3, 5), M has to be homeomorphic to
the Poincaré sphere, which satisfies χM > 0, so P has the S3-geometry.

To end this section, we simply note that Proposition 3.5.4 together with Corollary 3.5.5
clearly imply Proposition 3.1.5.

3.6 Taut C2-foliation gives S̃L2(R)-geometry

Here we do the proof of Theorem 3.1.2.

We keep the previous notations. Let n be a positive integer and M be a QHS Seifert
fibered 3-manifold, with n exceptional fibers : M = M(−b0, b1/a1, . . . , bn/an). Assume

that M does not admit the S̃L2(R)-geometry. We make the proof by contradiction. Sup-
pose that M admits a taut C2-foliation. We may recall that if n ∈ {1, 2}, then M has a
finite π1, hence M cannot admit a taut C2-foliation. Therefore, by Proposition 3.5.4, we
have n ∈ {3, 4}.
Assume that n = 4. By Theorem 3.4.1 and Theorem 3.1.1, since M admits a taut C2-
foliation, b0 ∈ {1, 2, 3}. Moreover the cases b0 = 1 and b0 = 3 are equivalent (see the
fiber-preserving homeomorphism Φ in Section 2).

On the other hand, Proposition 3.5.4 implies that M = M(−b0, 1/2, 1/2, 1/2, 1/2) with
b0 6= 2; and Corollary 3.4.5 (1) implies that b0 6= 1.

Therefore, we may assume that n = 3. Similarly b0 ∈ {1, 2} and b0 = 1 and b0 = 2 are
equivalent cases, by considering the fiber-preserving homeomorphism Φ.

So, we may assume that b0 = 1. Let M = M(−1, b1/a1, b2/a2, b3/a3),

Since M is a QHS Seifert fibered 3-manifold, which does not admit the S̃L2(R)-
geometry, Proposition 3.5.3 and Lemma 3.5.1(2) give respectively :





(I1)
3∑

i=1

1

ai
≥ 1

and

(I2)
3∑

i=1

bi
ai
6= 1

By Corollary 3.4.5, we order the coefficients : b1/a1 ≥ b2/a2 ≥ b3/a3.

Let ai0 = min(a1, a2, a3). By (I1), ai0 ∈ {2, 3}.

First, we prove that ai0 cannot be 3. We make the proof by contradiction. Assume
that ai0 = 3, then (I1) implies that ai = 3 for all i ∈ {1, 2, 3}. Now, for all i ∈ {1, 2, 3},
bi < ai so bi ≤ 2. If there exists i ∈ {1, 2, 3} such that bi = 2 then bi/ai = 2/3 > 1/2.
But for j 6= i, bj/aj ≥ 1/3, which is a contradiction to Corollary 3.4.5 (2). Therefore,
bi/ai = 1/3, for all i ∈ {1, 2, 3}, which contradicts (I2).
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Hence, we may assume that ai0 = 2. Then :

bi0/ai0 = 1/2.

By Corollary 3.4.5 (1), bi0/ai0 = b1/a1.

Then Corollary 3.4.5 (1) and (2) imply respectively that a3 ≥ 4 and a2 ≥ 3.

Now (I1) implies that {a1, a2, a3} is one of the following sets :

{2, 3, 4}, {2, 3, 5}, {2, 3, 6} or {2, 4, 4}.

We distinguish the cases a2 = 3 and a2 = 4.

Case 1 : a2 = 3.
Then Corollary 3.4.5 (1) implies that :

b2/a2 = 1/3.

Now, by Theorem 3.4.3, there exist positive integers α and m which satisfy Property (∗).

Now Corollary 3.4.5 (2) implies that :
b3
a3
∈

{
1

4
,
1

5
,
1

6

}
. Hence, by (∗)(iii), m ≤ 5.

Since b1/a1 = 1/2, m > 2.

If m = 3 then α ∈ {1, 2}, but in both cases (∗)(i) or (∗)(ii) cannot be satisfied.
Similarly, if m = 4 then α ∈ {1, 2, 3}, but in all cases (∗)(i) or (∗)(ii) cannot be satisfied.

If m = 5 then a3 = 6 and b3 = 1; otherwise (∗)(iii) cannot be satisfied.

Thus, b1/a1 + b2/a2 + b3/a3 = 1/2 + 1/3 + 1/6 = 1, which is in contradiction to (I2),
i.e. M cannot be a QHS.

Case 2 : a2 = 4.

Then a2 = a3 = 4. Therefore Corollary 3.4.5 (1) implies that
b2
a2

=
b3
a3

=
1

4
. Therefore

(I2) is not satisfied, which is the final contradiction.

This ends the proof of Theorem 3.1.2.

3.7 Proof of Theorem 1.0.11

Let n be a positive integer greater than two. We keep the previous conventions and
notations and denote any QHS Seifert fibered 3-manifolds M with its normalized Seifert
invariant, by : M = M(−b0, b1/a1, b2/a2, . . . , bn/an).

Let SF1 be the set of all Seifert fibered 3-manifolds for which b0 = 1 and which admit
the S̃L2(R)-geometry.

We denote by Qn the set :
Qn = Sn ∩ SF1.

Then Qn is the set of non-integral QHS Seifert fibered 3-manifolds M with n exceptional
fibers, which admit the S̃L2(R)-geometry and M = M(−1, b1/a1, b2/a2, . . . , bn/an).

This section is devoted to prove the following result, which clearly implies Theo-
rem 1.0.11.
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Theorem 3.7.1. Let n be a positive integer greater than two. For each n :
(i) There exist infinitely many Seifert fibered manifolds in Qn which admit a taut

analytic foliation; and
(ii) There exist infinitely many Seifert fibered manifolds in Qn which do not admit a

taut C2-foliation.
(iii) There exist infinitely many Seifert fibered manifolds in Q3 which do not admit a

taut C0-foliation.

Proof. The proof of Theorem 3.7.1 is an immediate consequence of the two following
lemmata. Let n be a positive integer greater than two. LetM(n) be the family of Seifert

fibered 3-manifolds M with n exceptional fibers such that M = M(−1,
1

2
,
b2
a2

,
b3
a3

, . . . ,
bn
an

)

and the exceptional slopes are ordered in the following way :
1

2
>

b2
a2
≥

b3
a3
≥ · · · ≥

bn
an

.

Lemma 3.7.2. Let n be a positive integer greater than two. We consider the following
families of infinite Seifert fibered 3-manifolds.

M1(n) =

{
M ∈M(n), with

b2
a2

=
3

5
, n > 3

}
;

M1(3) =

{
M ∈M(3), with

b2
a2

=
3

5
, and a3 ≥ 4

}
;

M2(n) =

{
M ∈M(n), with

b2
a2

=
2

5
,
b3
a3

>
1

5
, n > 3

}
;

M2(3) =

{
M ∈M(3), with

b2
a2

=
2

5
,
b3
a3

>
1

5
, and a3 ≥ 4

}
.

If M ∈ M1(n) ∪ M2(n), then M ∈ Qn. In particular, M is a non-integral homology

3-sphere, which admits the S̃L2(R)-geometry, and M does not admit a taut C2-foliation.

Furthermore, if M ∈ M1(3) ∪ M2(3), then M ∈ Q3, and M does not admit a taut
C0-folitation.

Proof. First, considering Lemma 3.5.1, we may check easily that if M ∈ M1(n) ∪M2(n)
then M is a QHS but not a ZHS.

Indeed if M ∈M1(n), then e(M) > −1 + 1/2 + 3/5.

If M ∈M2(n), then e(M) > −1 + 1/2 + 2/5 + 1/5.

In both cases, e(M) > 1/10, so e(M) 6= 0; hence, M is a QHS.

On the other hand, if e(M) =
ε

a1a2 . . . an
(where ε = ±1) then e(M) <

1

10a3
;

which is a contradiction. Then, M is not a ZHS.

Now, we check that they all have the S̃L2(R)-geometry.

If n ≥ 4, then it is a direct consequence of Proposition 3.5.4.

If n = 3, that follows from
3∑

i=1

1

ai
< 1 (here, we need that a3 ≥ 4).
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In conclusion, M1(n) ∪M2(n) ⊂ Qn (for n ≥ 3).

Finally, we check that they do not admit a taut C2-foliation.

If M ∈M1(n), Corollary 3.4.5 (1) implies that M cannot admit a taut C2-foliation.

If M ∈M2(n), then
b2
a2

and
b3
a3

both are greater than 1/5; therefore (iii) implies that

m ≤ 4. Thus, α ∈ {1, 2, 3}. In all cases, (i) or (ii) cannot be satisfied.

Furthermore, by Theorem 3.1.1, if M ∈
(
M1(3) ∪ M2(3)

)
and M admits a taut C0-

folitation, then the foliation can be isotoped to be horizontal; which is impossible for M
in M1(3) ∪M2(3).

Lemma 3.7.3. Let n be a positive integer greater than two. Let M3 and M4(n) be the
two following families of infinite Seifert fibered 3-manifolds.

M3 =

{
M

(
− 1,

1

2
,
2

5
,

k

7k + 1

)
∈M(3), k ∈ Z, k ≥ 1

}
;

M4(n) =

{
M

(
− 1,

1

2
,
2

5
,
1

10
,

b4
10b4 + 1

, . . . ,
bn

10bn + 1

)
∈M(n), n > 3

}
.

If M ∈M3∪M4(n), then M ∈ Qn and is a non-integral Seifert fibered 3-manifold, which

admits the S̃L2(R)-geometry and a taut analytic foliation.

Proof. First, considering Lemma 3.5.1, we can check that if M ∈ M3 ∪M4, then M is a
QHS but not a ZHS.

Indeed, if M ∈M3, then e(M) > −1 + 1/2 + 2/5 + 1/8,

i.e. e(M) > 1/40; so e(M) 6= 0 and M is a QHS.

If e(M) =
ε

a1a2a3
(where ε = ±1) then e(M) < 1/70;

which is not possible so M is not a ZHS.

Similarly, if M ∈M4, then e(M) > −1 + 1/2 + 2/5 + 1/10 + 1/11,

i.e. e(M) > 1/11; so e(M) 6= 0 and M is a QHS.

If e(M) =
ε

a1a2 . . . an
then e(M) < 1/100, which is not possible so M is not a ZHS.

Now, we check that they all admit the S̃L2(R)-geometry.

If n ≥ 4, then it is a direct consequence of Proposition 3.5.4.

If n = 3, that follows from

n∑

i=1

1

ai
< 1.

Finally, if we choose α = 3 and m = 7 then (m,α) trivially satisfies Property (∗); which
implies that they all admit a taut analytic foliation (by Theorems 3.4.1 and 3.4.3).

End of proof of Theorem 3.7.1
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3.8 Proof of Theorem 1.0.10

This section is almost entirely devoted to the proof of Proposition 3.8.1, which implies
Theorem 1.0.10, as it will be shown below.

We may recall here (see Section 2) that if M is a Seifert fibered 3-manifold, then
M = M(−b0, b1/a1, . . . , bn/an), where b0 is a positive integer and 0 < bi < ai for all
i ∈ {1, . . . , n}. Note that n has to be greater than 2 (otherwise M cannot be a ZHS other
than S3).

If M is also a ZHS, then two rational coefficients cannot be the same, see Remark 3.5.2;
therefore we may re-order them so that b1/a1 > b2/a2 > · · · > bn/an.

Thus, two positive integersm and α satisfy Property (∗) (for these rational coefficients)
if and only if :

α < m and (i) to (iii) of Property (∗) are all satisfied.

Proposition 3.8.1. Let n be a positive integer and M be a ZHS Seifert fibered 3-manifold,
which is neither homeomorphic to S3 nor to P.
We assume that M = M(−1, b1/a1, . . . , bn/an), where :

- 0 < bi < ai for all i ∈ {1, . . . , n}, and;

- b1/a1 > b2/a2 > · · · > bn/an.
Then there exist two positive integers m and α which satisfy Property (∗).

Proof of Theorem 1.0.10

First of all, if M is either homeomorphic to S3 or to the Poincaré sphere P, then we recall
that M cannot admit a taut foliation.

We assume that M is neither homeomorphic to S3 nor to the Poincaré sphere P. We
want to show that M always admits a taut analytic foliation.

Let M = M(−b0, b1/a1, . . . , bn/an), where b0 is a positive integer and 0 < bi < ai for
all i ∈ {1, . . . , n}.

First, we may note that Corollary 3.4.2 claims that if b0 ∈ {2, . . . , n − 2} then M
admits a horizontal analytic foliation, which is a taut C2-foliation. Then, we assume for
the following that b0 6∈ {2, . . . , n− 2}.

On the other hand, since M is a ZHS, Lemma 3.5.1 (1) implies that

b0 =

n∑

i=1

bi
ai

+
ε

a1a2 . . . an
, where ε ∈ {−1,+1}.

Then, the property 0 < bi/ai < 1 for all i ∈ {1, . . . , n}, implies that 0 < b0 < n. By the
fiber-preserving homeomorphism Φ (see Section 2) we may assume that b0 = 1. Hence,
Proposition 3.8.1 implies that there exists a pair of positive integers (m,α) which satisfy
Property (∗). This implies that M admits a horizontal foliation (Theorem 3.4.3) then a
taut analytic foliation (Lemma 3.2.2 and Theorem 3.4.1); which ends the proof of Theo-
rem 1.0.10.
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The remaining of the paper is entirely devoted to the proof of Proposition 3.8.1.

Schedule of the proof of Proposition 3.8.1

The proof of Proposition 3.8.1 is organized in four steps, as follows.
Step 1 : If Proposition 3.8.1 is true for n = 3 then it is true for all n ≥ 3.
Step 2 : Considering n = 3 gives common notations and results for the following.
Step 3 : We prove Proposition 3.8.1 for n = 3 and ǫ = −1.
Step 4 : We prove Proposition 3.8.1 for n = 3 and ǫ = 1.

Before starting the proof, we fix some notations and conventions for all the following
of the paper.

Notations - Conventions

We keep the previous notations.

Let M = M(−1, b1/a1, . . . , bn/an) be a ZHS Seifert fibered 3-manifold, where 0 < bi <
ai for all i ∈ {1, . . . , n}.

By Lemma 3.5.1, M is a ZHS if and only if :

(E1)
n∑

i=1

bi
ai

= 1 +
ǫ

a1.a2. . . . .an
, where ǫ ∈ {−1, 1}

Let âi (for i ∈ {1, . . . , n}), α1, α2, a
′
3, b

′
3 be the following positive rational numbers. Note

that all are positive integers but α1, α2, which are rational numbers.

α1 = 1−
b1
a1

α2 =
b2
a2

âi =
a3 . . . an

ai
∀i ∈ {3, . . . , n}

b′3 =

n∑

i=3

biâi a′3 = a3 . . . an

Thus,

b′3
a′3

=

n∑

i=3

bi
ai
.

Now, we fix the following inequalities by denoting them from (1) to (6). The former three
are trivially always true. The last three are true when n = 3, see Claim 3.8.2; they concern
Steps 2 to 4.
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(1)
b1
a1

>
b2
a2

> · · · >
bn
an

(2)
b1
a1
≥

1

2
(3) α1 ≤

b1
a1

When n = 3 :

(4)
b2
a2

<
1

2
(5)

b3
a3

<
1

4
(6) α2 > α1 − α2

(1) up to reordering;
(2) by Corollary 3.4.4, which implies (3);
(4) to (6), by Claim 3.8.2.

When n = 3, a′3 = a3 and b′3 = b3, and (E1) is equivalent to :

(E2)
b3
a3

= α1−α2+
ǫ

a1a2a3
, where ǫ ∈ {−1, 1}.

Claim 3.8.2. If n = 3 then
b2
a2

<
1

2
,
b3
a3

<
1

4
and α2 > α1 − α2.

Proof. Since b1/a1 ≥ 1/2, there exists a non-negative integer r1 such that

2b1 = a1 + r1.

If b2/a2+b3/a3 < 1/2 then (1) implies (4) and (5). So, we may suppose that b2/a2+b3/a3 ≥
1/2. Hence, there exists a non-negative integer r such that :

2(b2a3 + a2b3) = a2a3 + r.

Then (E2) implies that
r1
2a1

+
r

2a2a3
=

ǫ

a1a2a3
, so r1a2a3 + ra1 = 2ǫ.

Therefore, r1 = 0, r = 1, a1 = 2, and ǫ = +1.
Thus, b1/a1 = 1/2 and (1) implies (4) and a3b2 > a2b3.
Then 2(b2a3 + a2b3) = a2a3 + r implies 1 + a2a3 > 4a2b3 and so a2a3 ≥ 4a2b3, which is
equivalent to 1/4 ≥ b3/a3.
Since a1 = 2 and the ai’s are pairwise relatively prime, 1/4 > b3/a3 which proves (5).

By (E2), α1 − α2 =
b3
a3
−

ǫ

a1a2a3
.

On the other hand, (1) implies : b2a3 ≥ b3a2 + 1 (since they are positive integers).

Therefore, α2 =
b2
a2
≥

b3
a3

+
1

a2a3
>

b3
a3
−

ǫ

a1a2a3
which implies (6).
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3.8.1 Step 1 : From n = 3 to n > 3

We suppose that Proposition 3.8.1 is satisfied for n = 3. Now, we assume that n ≥ 4 and
M = M(−1, b1/a1, . . . , bn/an) is a ZHS. We want to show that Property (∗) is satisfied
for the rational coefficients of the Seifert invariant of M .
Let M ′ = M(−1, b1/a1, b2/a2, b

′
3/a

′
3). Note that (E1) is satisfied because M is a ZHS;

therefore M ′ is also a ZHS, by the definition of b′3/a
′
3.

We separate the proof according to either
b′3
a′3

<
b2
a2

, or
b2
a2

<
b′3
a′3

.

Note that
b2
a2
6=

b′3
a′3

because the ai’s are pairwise relatively prime.

Case 1 :
b′3
a′3

<
b2
a2

.

First, we check that M ′ 6∼= P. Indeed, otherwise
b′3
a′3

=
1

5
, so a′3 = a3 . . . an = 5, with

n ≥ 4; a contradiction. Then, there exist positive integers m and α such that α < m and :

(i)
b1
a1

<
m− α

m
;

(ii)
b2
a2

<
α

m
; and

(iii)
b′3
a′3

<
1

m
.

By definition,
bi
ai

<
b′3
a′3

for i ∈ {3, 4, . . . , n}, then the same positive integers m and α

satisfy Property (∗) for the rational coefficients
bi
ai

(for i ∈ {1, . . . , n}).

Case 2 :
b2
a2

<
b′3
a′3

.

We repeat the same argument.

Similarly, M ′ 6∼= P; otherwise
b′3
a′3

=
1

3
, so a3 . . . an = 3, with n ≥ 4; a contradiction. Then,

there exist positive integers m and α such that α < m and :

(i)
b1
a1

<
m− α

m
;

(ii)
b′3
a′3

<
α

m
; and

(iii)
b2
a2

<
1

m
.

Since b1/a1 > b2/a2 > · · · > bn/an, we obtain that
bi
ai

<
1

m
for i ∈ {2, 3, . . . , n}, which

implies that m and α can be chosen so that they satisfy Property (∗) for the rational

coefficients
bi
ai

(for i ∈ {1, . . . , n}).

89



3.8. PROOF OF THEOREM ?? S. CAILLAT-GIBERT

3.8.2 Step 2 : General results for n = 3

First, note that if m and α are positive integers such that α < m, which satisfy Property
(∗) then, by definition of α1 and α2 : (i) and (ii) of Property (∗) are respectively equivalent
to (I) and (II) bellow. 




(I) α < mα1

(II) mα2 < α

Let

a = a1a2 and

b = a− b1a2 − b2a1;

then
b

a
= α1 − α2.

Let [.] denote the integral value,

i.e. [x] is the integer k such that k ≤ x < k + 1, for all real x.
Let N = [a/b], hence

N =

[
1

α1 − α2

]
.

Lemma 3.8.3. Recall that α and m are integers. The two following properties are satis-
fied.

(i) N ≥ 4;
(ii) If Nα1 − 1 ≤ α ≤ Nα1 and N − 1 ≤ m, then 0 < α < m.

Proof. Proof of (i). By (E2) and (5), α1 − α2 <
1

4
−

ε

aa3
, i.e. 4b < a−

4ε

a3
.

Note that (5) implies that a3 ≥ 5 (b3 ≥ 1).

Then (since a and b are positive integers) 4b ≤ a. So N =

[
a

b

]
≥ 4.

Proof of (ii). Let α and m such that Nα1 − 1 ≤ α ≤ Nα1 and N − 1 ≤ m.

Now, we can check that 0 < α < m.

The fact that α < m is trivial because α1 ≤ 1/2.
Let’s check that α ≥ 1.

First, note that if b = 1 then Nα1 − 1 = a
(a1 − b1)

a1
− 1 = a2(a1 − b1)− 1 = b2a1 > 1.

Then, we assume b > 1.
We proceed by contradiction. Assume α = 0, then Nα1 ≤ 1.

Nα1 ≤ 1⇔ α1 ≤
1

N
, which is

1

[a/b]
.
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Hence, (E2) implies
b2
a2

+
b3
a3
≤

1

[a/b]
+

ǫ

a1a2a3
.

Since
b3
a3

<
b2
a2

,
b3
a3
≤

1

2[a/b]
+

ǫ

2a1a2a3
and so 2b3[a/b] ≤ a3 +

ǫ[a/b]

a
.

Now, b > 1 implies
[a/b]

a
< 1 hence 2b3[a/b] ≤ a3.

Furthermore [a/b] > a/b− 1⇒
a

b
− 1 <

a3
2b3

and so : ab3 − bb3 <
a3b

2
.

Then ab3 −
a3b

2
< bb3.

Finally, note that (E2)⇔ ab3 − a3b = ǫ, i.e. ab3 −
a3b

2
= ǫ+

a3b

2
.

Hence ǫ+
a3b

2
< bb3 ⇔

b3
a3

>
1

2
+

ǫ

ba3
.

By (5) ε = −1 and
1

4
>

1

2
+
−1

ba3
, i.e.

1

ba3
>

1

4
, so ba3 < 4.

This is a contradiction because (5) implies that a3 ≥ 5 and b ≥ 2.

Lemma 3.8.4. Let r = Nα1 − [Nα1], r
′ = a/b− [a/b] and r′′ = aα1/b− [aα1/b].

If Nα1 ∈ N, let (α,m) = (Nα1 − 1, N − 1).
If Nα1 6∈ N and r′α2 ≤ r′′ < α1r

′, let (α,m) = ([Nα1], N).
Otherwise, let (α,m) = ([Nα1], N − 1).

Then the integers m and α are positive integers which satisfy (I) and (II) and α < m.

The proof of this lemma is the main part of Step 3, but does not depend on ε = ±1.
The fact that 0 < α < m is an immediate consequence of Lemma 3.8.3.

3.8.3 Step 3 : n = 3 and ǫ = −1

Let us consider Property (∗∗) bellow :

(∗∗)





(I) α < mα1

(II) mα2 < α

(III)
b

a
<

1

m

By (E2) : ǫ = −1 ⇒
b3
a3

<
b

a
, then Property (∗∗) implies trivially Property (∗), i.e. if

there exist positive integers m and α, such that α < m which satisfy Property (∗∗), then
they satisfy Property (∗).
We will separate the cases where Nα1 ∈ N or Nα1 6∈ N. If Nα1 6∈ N, let
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r = Nα1 − [Nα1] r′ = a/b− [a/b] r′′ = aα1/b− [aα1/b]

Claim 3.8.5. Nα1 =
α1

α1 − α2
− α1r

′.

Proof. By definition of r′, Nα1 = [a/b]α1 = (a/b− r′)α1.

Then Nα1 =
α1

α1 − α2
− α1r

′.

Claim 3.8.6. Nα1 =
[ α1

α1 − α2

]
+ r′′ − α1r

′.

Proof. By Claim 3.8.5
α1

α1 − α2
− α1r

′ = Nα1.

Moreover,
α1

α1 − α2
=

aα1

b
=

[ α1

α1 − α2

]
+ r′′, by definition of r′′.

Claim 3.8.7. If [Nα1] =
[ α1

α1 − α2

]
− 1 then r′′ = r + α1r

′ − 1.

Proof. First, we may note that Nα1 = [Nα1] + r, by definition of r.

Assume that [Nα1] =
[ α1

α1 − α2

]
− 1.

By Claim 3.8.5,
α1

α1 − α2
− α1r

′ = Nα1 = [Nα1] + r =
[ α1

α1 − α2

]
− 1 + r.

Hence
α1

α1 − α2
=

[ α1

α1 − α2

]
+ α1r

′ + r − 1.

So r′′ = r + α1r
′ − 1, by definition of r′′.

We want to find positive integers m and α such that α < m, and which satisfy Prop-
erty (∗∗). First, we consider separately the case b = 1.

Lemma 3.8.8. If b = 1 then m = a−1 and α = a1b2 satisfy property (∗) and 0 < α < m.

Proof. Assume that b = 1 and let m = a − 1 and α = a1b2. First, we can check that
0 < α < m because a1b2 ≤ a1(a2 − 1) < a1a2 − 1. Now, we want to check successively (I)
to (III).

(I)⇔ α < mα1.

mα1 = (a1a2 − 1)
a1 − b1

a1
> a2(a1 − b1)− 1.

Since b = 1, a2(a1 − b1)− 1 = a1b2 < mα1.

(II)⇔ mα2 < α.
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mα2 = (a1a2 − 1)
b2
a2

= a1b2 −
b2
a2

< α.

(III)⇔
b

a
<

1

m
.

Since b = 1 and m = a− 1, (III) is direct.

In the following of this section, we assume that b 6= 1. We distinguish the three fol-
lowing cases.

Case A : Nα1 ∈ N. Then (α,m) = (Nα1 − 1, N − 1).

Case B : Nα1 6∈ N and r′α2 > r′′ or r′′ ≥ α1r
′. Then (α,m) = ([Nα1], N).

Case C : Nα1 6∈ N and r′α2 ≤ r′′ < α1r
′. Then (α,m) = ([Nα1], N − 1).

First, we prove (III) of Property (∗∗). Then Lemma 3.8.4 concludes this step. Note
that, for ε = 1, Lemmata 3.8.8 and 3.8.4 imply that (I) to (III) are true, but (III) does
not imply (iii).

Furthermore, we may note that b 6= 1 if and only if
[a
b

]
<

a

b
because a and b are

positive coprime integers (since a1 and a2 are so).

Lemma 3.8.9. We assume that b 6= 1. If the integers α and m are chosen as in

Lemma 3.8.4 (according to Cases A, B or C) then
b

a
<

1

m
.

Proof. Let α and m be integers as in Cases A, B and C successively.

Assume that Case A or Case C is satisfied.

Then m = N − 1. Therefore (III) is trivial, because m = N − 1 = [a/b]− 1 < a/b, so
1/m > b/a.

Assume now that Case B is satisfied.

Then (III) ⇔ b/a < 1/N ⇔ N < a/b, which is satisfied because N = [a/b] and
b 6= 1.

Proof of Lemma 3.8.4

We may recall that the proof does not depend on ε = ±1.

We only have to show that the considered integers in Cases A, B and C satisfy (I) and
(II). We may recall that 0 < α < m by Lemma 3.8.3.

Case A : Nα1 ∈ N, (α,m) = (Nα1−1, N−1)

(I)⇔ α < mα1.

So, (I)⇔ Nα1 − 1 < (N − 1)α1 ⇔ α1 < 1 which is true because 0 <
b1
a1

< 1.

(II)⇔ mα2 < α.
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(II)⇔ (N − 1)α2 < Nα1 − 1⇔ 1− α2 < N(α1 − α2).

Therefore, (II)⇔
1

α1 − α2
−N <

α2

α1 − α2
.

But recall that N =
[ 1

α1 − α2

]
, hence

1

α1 − α2
− N < 1. Thus, (II) follows from

Claim 3.8.2 (6).

Case B : r′′ ≥ α1r
′ or r′′ < r′α2, (α,m) = ([Nα1], N)

(I)⇔ α < mα1.

(I) is trivially satisfied : (I)⇔ [Nα1] < Nα1.

(II)⇔ mα2 < α.

(II)⇔ Nα2 < [Nα1]⇔ Nα2 < Nα1 − r.

Then (II)⇔ r < N(α1 − α2)⇔ r < (a/b− r′)(α1 − α2), by definition of r′.

Recall that b/a = α1 − α2, so

(II)⇔ r < 1− r′(α1 − α2)⇔ r + r′(α1 − α2) < 1.

We want to prove that r + r′(α1 − α2) < 1.

Assume first, that r′′ ≥ α1r
′.

Then Claim 3.8.6 implies that : [Nα1] =
[ α1

α1 − α2

]
.

By Claim 3.8.5
α1

α1 − α2
− α1r

′ = [Nα1] + r, then [Nα1] =
α1

α1 − α2
− α1r

′ − r.

Thus
α1

α1 − α2
=

[ α1

α1 − α2

]
+ α1r

′ + r; so r′′ = α1r
′ + r < 1.

Now, we can see that : r + r′(α1 − α2) < r + α1r
′ < 1, which proves (II).

Now, we may assume that r′′ < r′α2.

By the previous work, we may assume that r′′ < α1r
′.

Then Claim 3.8.6 implies that [Nα1] =
[ α1

α1 − α2

]
− 1.

Therefore, Claim 3.8.7 implies that r′′ = r + α1r
′ − 1.

Recall that we want to show that r + r′(α1 − α2) < 1.

Since r′′ < r′α2, we obtain :

r + r′(α1 − α2) = r + α1r
′ − r′α2 < r + α1r

′ − r′′.

Here, r + α1r
′ − r′′ = 1, which gives the required inequality.

94



S. CAILLAT-GIBERT 3.8. PROOF OF THEOREM ??

Case C : r′′ < α1r
′ and r′′ ≥ r′α2, (α,m) = ([Nα1], N−1)

(I)⇔ α < mα1.

(I)⇔ [Nα1] < (N − 1)α1 ⇔ α1 < r.

Since r′′ < α1r
′, by Claim 3.8.6 : [Nα1] =

[ α1

α1 − α2

]
− 1.

Then, by Claim 3.8.7 : r′′ = r + α1r
′ − 1.

Thus (I)⇔ α1 < r′′ − α1r
′ + 1⇔ α1r

′ − r′′ < 1− α1.

Hence, (I)⇔ α1r
′ − r′′ <

b1
a1

, because 1− α1 =
b1
a1

.

On the other hand, α1r
′ − r′′ < α1 − r′′ and α1 − r′′ ≤ α1 ≤

b1
a1

by (3).

Therefore (I) is satisfied.

(II)⇔ mα2 < α.

(II)⇔ (N − 1)α2 < [Nα1].

By Claim 3.8.6 and the definition of r′′, and since r′′ < α1r
′ :

[Nα1] = [
α1

α1 − α2
]− 1 =

α1

α1 − α2
− r′′ − 1.

Moreover, by the definition of r′ : Nα2 =
α2

α1 − α2
− α2r

′.

Hence (II)⇔ Nα2 < [Nα1] + α2 ⇔
α2

α1 − α2
− α2r

′ <
α1

α1 − α2
− r′′ − 1 + α2.

Therefore, (II)⇔ r′′ − r′α2 < α2.

On the other hand, α2 > α1 − α2 by (6) and r′α2 ≤ r′′ < α1r
′.

Then, r′′ − r′α2 < r′(α1 − α2) < r′α2 < α2, which proves that (II) is satisfied.

Proof of Lemma 3.8.4

In conclusion, Lemma 3.8.8 solve the case b = 1. If b 6= 1, then for the α and m chosen as
in Lemma 3.8.3, we get that 0 < α < m and Lemmata 3.8.4 together with 3.8.9 show that
they satisfy (I), (II) and (III). Therefore, Property (∗) is satisfied for n = 3 and ε = −1.
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3.8.4 Step 4 : n = 3 and ǫ = 1

Recall that a = a1a2 and b = a− b1a2 − b2a1.

We assume that ǫ = 1 then (E2) gives :

(E3)
b3
a3

=
b

a
+

1

a1a2a3

so :
(7) ab3 − ba3 = 1.

Then (Bezout relation) there exists a unique pair of positive coprime integers (u, v) such
that :

(8)





au− bv = 1;
0 < u ≤ b and
0 < v ≤ a

Now, (7) implies that there exists p ∈ N such that

{
b3 = u+ bp and
a3 = v + ap

Moreover, for all p ∈ N, we have :

(9)
u

v
≥

u+ bp

v + ap
>

u+ b(p+ 1)

v + a(p+ 1)
>

b

a

We want to find positive integers α and m such that α < m and satisfy Property (∗). We
consider separately the three following cases.

Case I : u 6= 1.

Case II : u = 1 and b = 1.

Case III : u = 1 and b 6= 1.

Case I : u 6= 1

We will choose the integers α and m as in Lemma 3.8.4, so m ∈ {N − 1, N}. By (9), if
u

v
<

1

m
, then (iii) of Property (∗) is satisfied. Therefore, Lemma 3.8.4 and the following

lemma conclude Case I.

Lemma 3.8.10. If N − 1 ≤ m ≤ N and u 6= 1, then
u

v
<

1

m
.

Proof. Assume that N − 1 ≤ m ≤ N and u 6= 1. First, note that b 6= 1, because 0 < u ≤ b
implies that if b = 1 then u = 1.

We make the proof by contradiction. So, we suppose that
u

v
≥

1

m
, and we look for a

contradiction. Note that v = um cannot happen, because u, v are coprime integers, and

u and m are at least 2, by Lemma 3.8.3. Thus
u

v
>

1

m
.
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Moreover, by Lemma 3.8.9 :
b

a
<

1

m
. Then

b

a
<

1

m
<

u

v

By (8) :
a

b
−

v

u
=

1

ub

we obtain

0 < m−
v

u
<

a

b
−

v

u
=

1

ub
< 1

which implies that [v
u

]
= m− 1

Now, let

r′ =
a

b
−

[a
b

]
< 1, and ρ =

v

u
−

[v
u

]
< 1

We consider separately the cases m = N and m = N − 1.

First, assume that m = N =
[a
b

]
.

Then
[v
u

]
=

[a
b

]
− 1⇔

a

b
− r′ − 1 =

v

u
− ρ;

hence
1

ub
= 1 + r′ − ρ⇒ 1 + r′ − ρ <

1

b
because u 6= 1.

Thus r′ <
1

b
because ρ < 1.

Nevertheless, r′ =
a

b
−

[a
b

]
, a and b are coprime, and a > b.

Hence a = bk + l, where k ∈ N∗, and 1 ≤ l ≤ b− 1;

so r′ can be written r′ = k +
l

b
−

[
k +

l

b

]
=

l

b
⇒ r′ ≥

1

b
; which is a contradiction.

Now, assume that m = N − 1 =
[a
b

]
− 1.

Then
[v
u

]
=

[a
b

]
− 2⇔

a

b
− r′ − 2 =

v

u
− ρ;

hence
1

ub
= 2 + r′ − ρ.

This implies that
1

ub
> 1 because r′ and ρ lies in [0, 1[.

On the other hand,
1

ub
≤

1

4
, because b ≥ 2 and u ≥ 2.

These are in a contradiction.

(Lemma 3.8.10)
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Case II : u = 1 and b = 1

We assume that u = b = 1. Then au− bv = 1 gives v = a− 1.

We consider separately the cases where
b1
a1

>
1

2
or

b1
a1

=
1

2
.

First, assume that
b1
a1

>
1

2
.

Letm = a−2, and α = a2(a1−b1)−1 = a−a2b1−1 = b2a1 (because b = a−a2b1−a1b2 =
1. Then 0 < α < m.

We want to check (I), (II) and (iii).

(I)⇔ α < mα1 ⇔ a2(a1− b1)− 1 < (a1− b1)a2− 2α1 ⇔
1

2
<

b1
a1

(which is satisfied here).

(II) ⇔ mα2 < α ⇔ (a − 2)α2 < a2(a1 − b1) − 1 ⇔ 1 − 2α2 < a2(a1 − b1) − aα2;
which is satisfied because a2(a1 − b1)− aα2 = a2(a1 − b1)− a1b2 = b = 1.

By (9), (iii) is satisfied if
u

v
<

1

m
; which is true because

u

v
=

1

a− 1
and

1

m
=

1

a− 2
.

Now, assume that
b1
a1

=
1

2
.

Then a1 = 2 and b1 = 1. Since 1 = b = a2(a1 − b1)− a1b2, a2 = 1 + 2b2. So :

b2
a2

=
b2

1 + 2b2

and by (E2) :
b3
a3

=
1

2
−

b2
1 + 2b2

+
1

2(2b2 + 1)a3
.

Thus,
b3
a3

=
(2b2 + 1)a3 − 2b2a3 + 1

2(2b2 + 1)a3
, i.e.

b3
a3

=
a3 + 1

2(2b2 + 1)a3

We consider separately the cases b2 = 1 and b2 > 1.
Assume first b2 = 1.

Then a2 = 3 so
b3
a3

=
a3 + 1

6a3
.

Therefore, we can check easily that α = 2 and m = 5 satisfy Property (∗).

(i)
b1
a1

=
1

2
<

m− α

m
, which is

3

5
;

(ii)
b2
a2

=
1

3
<

α

m
, which is

2

5
; and
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(iii)
b3
a3

=
a3 + 1

6a3
<

1

m
(which is

1

5
) if and only if a3 > 5.

By (5) a3 ≥ 5, but if a3 = 5 then M ∼= P, so a3 > 5.

Now, we assume that b2 ≥ 2.

Let α = 2b2 − 1 and m = 4b2 − 1.

Since b2 ≥ 2 : 0 < α < m. We want to check (i), (ii) and (iii).

(i)
b1
a1

=
1

2
<

m− α

m
, which is

2b2
4b2 − 1

; so (i) is satisfied.

(ii)
b2
a2

=
b2

2b2 + 1
<

α

m
, which is

2b2 − 1

4b2 − 1
;

and
b2

2b2 + 1
<

2b2 − 1

4b2 − 1
if and only if 4b22 − b2 < 4b22 − 1, i.e. b2 > 1;

so (ii) is satisfied.

(iii)
b3
a3

=
a3 + 1

2(2b2 + 1)a3
<

1

m
, which is

1

4b2 − 1
.

Then, (iii) is satisfied if and only if :

(a3 + 1)(4b2 − 1) < (4b2 + 2)a3 i.e. 4b2 < 3a3 + 1.

Since
b3
a3

=
a3 + 1

2(2b2 + 1)a3
, b3 =

a3 + 1

2(2b2 + 1)
≥ 1 (because b3 is a positive integer).

So a3 + 1 ≥ 4b2 + 2; thus (iii) is satisfied.

Case III : u = 1 and b 6= 1

We assume u = 1 and b ≥ 2. Then a− bv = 1 by (8).

Claim 3.8.11. If
b2
a2

<
1

v
then m = v and α = 1 satisfy Property (∗).

Proof. Assume that
b2
a2

<
1

v
. To prove that m = v and α = 1 satisfy Property (∗), it

remains to prove that
b1
a1

<
v − 1

v
. Indeed, (II) and (iii) are trivially satisfied because

b3
a3

<
b2
a2

<
1

v
.

By (8) : 1 +
1

av
=

b1
a1

+
b2
a2

+
1

v
.

But
b2
a2

>
1

av
, otherwise b2 <

1

a1v
; which is impossible.

Therefore,
b1
a1

= 1 +
1

av
−

b2
a2
−

1

v
< 1−

1

v
, so

b1
a1

<
v − 1

v
.
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Hence, in the following, we assume that
b2
a2

>
1

v
(note that the equality is impossible

because the integers are coprime).

Let α be the integer such that (v − 1)α1 − 1 ≤ α < (v − 1)α1, and m = min(v − 1,M),

where M is the positive integer such that
α

α2
− 1 ≤M <

α

α2
. Then :

α = (v − 1)α1 − r, where 0 < r ≤ 1

M =
α

α2
− r′, where 0 < r′ ≤ 1

and m = min(M, v − 1).

First, we will check that m > α > 0, then we will show that the integers m and α satisfy
Property (∗).

Claim 3.8.12. The integers m and α satisfy : 1 ≤ α < m

Proof. First, we check that α ≥ 1, where α = (v − 1)α1 − r, 0 < r ≤ 1.

We show that (v − 1)α1 > 1, then α > 0. Since α ∈ N, α ≥ 1.

By (8) : α1 =
b2
a2

+
1

v
−

1

a1a2v
.

Since
b2
a2

>
1

v
, α1 >

2

v
−

1

a1a2v
, i.e. α1 >

2a1a2 − 1

a1a2v
.

Therefore v >
2a1a2 − 1

a1a2α1
, so (v − 1)α1 >

a1a2(2− α1)− 1

a1a2
.

Finally, recall that 1− α1 =
b1
a1

.

Thus, (v − 1)α1 >
a1a2(1 +

b1
a1
)− 1

a1a2
, i.e. (v − 1)α1 >

a1a2 + a2b1 − 1

a1a2
.

Since a2 ≥ 3, (v − 1)α1 >
a1a2 + 2

a1a2
> 1.

Now, we check that m > α.

If m = v − 1, this is trivial.

So, we may assume that m =
α

α2
− r′, where 0 < r′ ≤ 1.

Therefore, m = α(
1

α2
−

r′

α
).

Since α ≥ 1,
r′

α
≤ r′ ≤ 1, so m ≥ α(

1

α2
− 1).

Finally, (4) implies that α2 <
1

2
and so that m > α.
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To show that α and m satisfy Property (∗), we need the following claim.

Claim 3.8.13.
α1 − α2

α1
+ α1 < 1−

1

a
.

Proof. We first consider that
b1
a1

=
1

2
.

Then α1 =
1

2
and a = 2a2; so 1−

1

a
=

2a2 − 1

2a2
.

On the other hand,
α1 − α2

α1
+ α1 =

3

2
− 2α2 =

3a2 − 4b2
2a2

.

Then, here :
α1 − α2

α1
+ α1 < 1−

1

a
if and only if

a2 − 4b2 < −1.

Now, (6) implies α2 >
α1

2
, i.e. 4b2 > a2, so a2 − 4b2 ≤ −1.

We are going to show that a2 6= 4b2 − 1 by contradiction.

First, note that since b1/a1 = 1/2, a = 2a2 and b = a2 − 2b2 6= 1.

On the other hand, since a− bv = 1, v =
a− 1

b
=

2a2 − 1

a2 − 2b2
.

If a2 = 4b2 − 1, then v =
8b2 − 3

2b2 − 1
.

Now, v = 4 +
1

2b2 − 1
∈ N implies that b2 = 1, v = 5 and a2 = 3. Then b = 3− 2 = 1;

which is a contradiction.

Therefore, a2 < 4b2 − 1; which is the required inequality.

Now, we assume that
b1
a1

>
1

2
, so 2b1 − a1 > 0.

Then a1 − b1 < a1b2(2b1 − a1),

so (a1 − b1) + a21b2 < 2a1b1b2,

and (a1 − b1)− 2a1b1b2 + 2a21b2 < a21b2. Therefore :

(⋆) (a1 − b1)(1 + 2a1b2) < a21b2.

On the other hand, (6) implies that 2α2 > α1, i.e. 2a1b2 > a2(a1 − b1).

Hence, 2a1b2(a1 − b1) + (a1 − b1) > a2(a1 − b1)
2 + (a1 − b1), i.e.

(2a1b2 + 1)(a1 − b1) > a2(a1 − b1)
2 + (a1 − b1).
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Therefore, by the inequality (⋆) :

a2(a1 − b1)
2 + (a1 − b1) < a21b2.

So
a1 − b1
a21a2

<
a21b2 − a2(a1 − b1)

2

a21a2
; i.e.

α1

a
< α2 − α2

1.

Thus, we obtain
1

a
<

α2

α1
− α1, which gives the required inequality.

Now, we will show successively that α and m satisfy (iii), (II) and (I) of Property (∗).

- α and m satisfy (iii) :
b3
a3

<
1

m
.

This is trivially satisfied because by (9),
b3
a3
≤

1

v
, and m ≤ v − 1.

- α and m satisfy (II) : mα2 < α.

Since m ≤M , mα2 ≤ α−r′α2 < α (because r′ > 0) then (α,m) trivially satisfies (II).

- α and m satisfy (I) : α < mα1.

Since r > 0, (v − 1)α1 − r < (v − 1)α1. Hence, α < mα1 if m = v − 1. Thus, we may
assume that m = M ≤ v − 2.

So, we want to show that (v − 1)α1 − r < (
α

α2
− r′)α1. Now :

(v − 1)α1 − r < (
α

α2
− r′)α1 ⇔ v −

r

α1
<

(v − 1)α1 − r

α2
− r′ + 1

⇔ vα1α2 − rα2 < vα2
1 − α2

1 − rα1 − r′α1α2 + α1α2

⇔ r(α1 − α2) + r′α1α2 + α1(α1 − α2) < vα1(α1 − α2)

⇔ v(α1 − α2) > α1 − α2 + r
α1 − α2

α1
+ r′α2

Recall that
b

a
= α1 − α2 and a− bv = 1, so :

v(α1 − α2) =
vb

a
=

a− 1

a
= 1−

1

a
.

Therefore, α and m satisfy (I) if and only if

1−
1

a
> α1 − α2 + r

α1 − α2

α1
+ r′α2.

Since r and r′ both lie in ]0, 1] :

α1 − α2 + r
α1 − α2

α1
+ r′α2 < α1 − α2 +

α1 − α2

α1
+ α2,
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i.e. α1 − α2 + r
α1 − α2

α1
+ r′α2 < α1 +

α1 − α2

α1
< 1−

1

a
, by Claim 3.8.13.

Hence, α and m satisfy (I), which ends the proof of Proposition 3.8.1.
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Chapter 4

Conclusion et perspectives

Dans cette thèse nous nous sommes concentrés sur le problème toujours ouvert de
l’existence de feuilletage tendu.
Le premier travail a été de bien comprendre ce qu’était un feuilletage tendu (tourbillone-
ment, spiralement), et le rôle particulier des feuilles toriques, qui fait l’objet du Chapitre 2.
Le second travail a été de classifier les sphères d’homologie fibrées de Seifert qui admettent
un feuilletage tendu.
Les perspectives sont alors les suivantes :
Un travail en cours avec Daniel Matignon montre l’existence d’un C2-feuilletage sans feuille
compacte étant donné un C0-feuilletage sans feuille compacte sur une sphère d’homologie
fibrées de Seifert, qui permettrait de généraliser le Théorème 1.0.11.
Une autre perspective plus large, est de comprendre alors l’existence de feuilletage tendu
parmi les sphères d’homologies dont la JSJ-décomposition admet un morceaux fibré de
Seifert, par exemple les variétés graphées.

105



S. CAILLAT-GIBERT

106



Bibliography

Alexander James Waddell. A lemma on systems of knotted curves. Proc. Nat. Acad. Sci.
U.S.A. 9., pages 93–95, 1923. cf. page(s): 13

Brittenham Mark. Foliations and the topology of 3-manifolds. courses notes., 1993a.
cf. page(s): 19, 26, 47, 69

Brittenham Mark. Essential laminations in Seifert-fibered spaces. Topology, 32(1):61–85,
1993b. cf. page(s): 69, 71, 72, 75, 76

Brittenham Mark, Naimi Ramin, et Roberts Rachel. Graph manifolds and taut foliations.
J. Differential Geom., 45(3):446–470, 1997. cf. page(s): 16, 19, 22, 57, 72, 74, 76, 78

Caillat-Gibert Shanti et Matignon Daniel. Existence of taut foliations on seifert fibered
homology 3-spheres. 2011. submitted; Arxiv 1101.3710. cf. page(s):

Calegari Danny. Promoting essential laminations. Invent. Math., 166(3):583–643, 2006.
cf. page(s): 69

Clauss E. Essential laminations in closed seifert-fibered spaces. 1991. Thesis, Universirty
of Texas at Austin. cf. page(s): 69
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Résumé

Dans cette thèse, on étudie les C2-feuilletages de codimension 1, dans les 3-variétés compactes connexes
et orientables. Il est bien connu que l’on peut construire explicitement sur de telles variétés un feuilletage
qui possède des composantes de Reeb. Vient alors le problème crucial d’existence des feuilletages tendus

(toujours ouvert).

Rappelons qu’un feuilletage tendu n’admet pas de composante de Reeb, mais que la réciproque est
fausse.
La première partie de ce travail, consiste à comprendre la différence entre un feuilletage non-tendu sans
composante de Reeb et un feuilletage tendu. On verra que l’orientation transverse des feuilles toriques
joue un rôle crucial, en donnant une condition nécessaire et suffisante sur cette orientation transverse pour
qu’un feuilletage soit tendu. Pour cela on étudiera de près les procédés géométriques de tourbillonement

et de spiralement, et on montrera qu’ils apparaissent toujours au voisinage d’une feuille torique.

La seconde partie de ce travail se concentre sur le problème d’existence de feuilletages tendu.

Rappelons que depuis les travaux de D. Gabai [1983], on sait que si une 3-variété admet une homologie

non-triviale, alors elle admet un feuilletage tendu. Mais le problème d’existence est toujours ouvert parmi

les sphères d’homologies, et on s’intéresse ici à celles qui sont fibrées de Seifert. On montre que toutes les

sphères d’homologie entière fibrées de Seifert sauf S3 et la sphère d’homologie de Poincaré admettent un

feuilletage tendu. Par contre, parmi les sphères d’homologie rationnelle non-entière, fibrées de Seifert, il

existe une infinité de telles variétés qui admettent un feuilletage tendu, et une infinité qui n’en admettent

pas.

Mots Clés : Feuilletages tendus, Composante de Reeb, Sphère d’homologie, Variétés de Seifert, Tour-

billonement, Spirallement.

Abstract

In this thesis, we study codimension 1, C2-foliations, in compact, connected and orientable 3-manifolds.
It is well known that we can explicitly construct on such manifolds a foliation admitting Reeb components.
Then comes the crucial problem of existence of taut foliation (still opened).

Recall that a taut foliation does not admit a Reeb component, but the converse is false.
The first step of this work focuses on the difference between a non-taut and Reebless foliation, and a taut
foliation. We will understand that the transverse orientation of the torus leaves plays a key-role, by giving
a necessary and sufficient condition on the transverse orientation, for a foliation to be taut. For this, we
will study the geometric processes of turbulization and spiraling with generalizations, and we see that they
always appear in a neighborhood of a torus leaf.

The second step of this work is concentrated on the problem of existence of taut foliations.

Recall that since the work of D. Gabai [1983], we know that if a 3-manifold has non-trivial homology,

then it admits a taut foliation. This problem is still opened among homology spheres and we focus here

on Seifert fibered ones. We show that all Seifert fibered integral homology spheres (but S3 and Poincaré

homology sphere) admit a taut foliation. Nevertheless, among Seifert fibered rational (and non-integral)

homology spheres, there exist infinitely many which admit a taut foliation and infinitely many which do

not admit one.

Keywords : Taut foliations, Reeb component, Homology sphere, Seifert manifolds, Turbulization, Spi-

raling.


